Fei Xie, Weiliang Jin, J. Ryan Nolen, Hao Pan, Naiqin Yi, Yang An, Zhiyu Zhang, Xiangtong Kong, Fei Zhu, Ke Jiang, Sicong Tian, Tianji Liu, Xiaojuan Sun, Longnan Li, Dabing Li, Yun-Feng Xiao, Andrea Alu, Shanhui Fan, Wei Li
{"title":"垂直表面白天的亚环境辐射冷却","authors":"Fei Xie, Weiliang Jin, J. Ryan Nolen, Hao Pan, Naiqin Yi, Yang An, Zhiyu Zhang, Xiangtong Kong, Fei Zhu, Ke Jiang, Sicong Tian, Tianji Liu, Xiaojuan Sun, Longnan Li, Dabing Li, Yun-Feng Xiao, Andrea Alu, Shanhui Fan, Wei Li","doi":"10.1126/science.adn2524","DOIUrl":null,"url":null,"abstract":"<div >Subambient daytime radiative cooling enables temperatures to passively reach below ambient temperature, even under direct sunlight, by emitting thermal radiation toward outer space. This technology holds promise for numerous exciting applications. However, previous demonstrations of subambient daytime radiative cooling require surfaces that directly face the sky, and these cannot be applied to vertical surfaces that are ubiquitous in real-world scenarios such as buildings and vehicles. Here, we demonstrate subambient daytime radiative cooling of vertical surfaces under peak sunlight using a hierarchically designed, angularly asymmetric, spectrally selective thermal emitter. Under peak sunlight of about 920 watts per square meter, our emitter reaches a temperature that is about 2.5°C below ambient temperature, corresponding to a temperature reduction of about 4.3° and 8.9°C compared with a silica-polymer hybrid radiative cooler and commercial white paint, respectively.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"386 6723","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subambient daytime radiative cooling of vertical surfaces\",\"authors\":\"Fei Xie, Weiliang Jin, J. Ryan Nolen, Hao Pan, Naiqin Yi, Yang An, Zhiyu Zhang, Xiangtong Kong, Fei Zhu, Ke Jiang, Sicong Tian, Tianji Liu, Xiaojuan Sun, Longnan Li, Dabing Li, Yun-Feng Xiao, Andrea Alu, Shanhui Fan, Wei Li\",\"doi\":\"10.1126/science.adn2524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Subambient daytime radiative cooling enables temperatures to passively reach below ambient temperature, even under direct sunlight, by emitting thermal radiation toward outer space. This technology holds promise for numerous exciting applications. However, previous demonstrations of subambient daytime radiative cooling require surfaces that directly face the sky, and these cannot be applied to vertical surfaces that are ubiquitous in real-world scenarios such as buildings and vehicles. Here, we demonstrate subambient daytime radiative cooling of vertical surfaces under peak sunlight using a hierarchically designed, angularly asymmetric, spectrally selective thermal emitter. Under peak sunlight of about 920 watts per square meter, our emitter reaches a temperature that is about 2.5°C below ambient temperature, corresponding to a temperature reduction of about 4.3° and 8.9°C compared with a silica-polymer hybrid radiative cooler and commercial white paint, respectively.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"386 6723\",\"pages\":\"\"},\"PeriodicalIF\":44.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.adn2524\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adn2524","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Subambient daytime radiative cooling of vertical surfaces
Subambient daytime radiative cooling enables temperatures to passively reach below ambient temperature, even under direct sunlight, by emitting thermal radiation toward outer space. This technology holds promise for numerous exciting applications. However, previous demonstrations of subambient daytime radiative cooling require surfaces that directly face the sky, and these cannot be applied to vertical surfaces that are ubiquitous in real-world scenarios such as buildings and vehicles. Here, we demonstrate subambient daytime radiative cooling of vertical surfaces under peak sunlight using a hierarchically designed, angularly asymmetric, spectrally selective thermal emitter. Under peak sunlight of about 920 watts per square meter, our emitter reaches a temperature that is about 2.5°C below ambient temperature, corresponding to a temperature reduction of about 4.3° and 8.9°C compared with a silica-polymer hybrid radiative cooler and commercial white paint, respectively.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.