Ana Díaz-Fernández, Mads Ryø Jochumsen, Nana Louise Christensen, Karina Dalsgaard Sørensen, Kirsten Bouchelouche, Michael Borre, Mikkel Holm Vendelbo, Elena E. Ferapontova
{"title":"液体活检糖类评分生物标记物能准确显示和分层原发性和转移性前列腺癌","authors":"Ana Díaz-Fernández, Mads Ryø Jochumsen, Nana Louise Christensen, Karina Dalsgaard Sørensen, Kirsten Bouchelouche, Michael Borre, Mikkel Holm Vendelbo, Elena E. Ferapontova","doi":"10.1021/acs.analchem.4c04316","DOIUrl":null,"url":null,"abstract":"Prostate cancer (PCa) is the most commonly diagnosed cancer in males. Early PCa usually shows no clinical symptoms and its primary diagnosis is currently guided by liquid-biopsy testing of serum prostate-specific antigen (PSA). This testing suffers from high false-positive and false-negative rates. Identifying new biomarkers for precise liquid-biopsy detection of PCa is, thus, an acute clinical request. Here, by using an advanced dual-functional aptamer assay, we quantified the extent of glycosylation of PSA circulating in cancer patients’ serum, linked it to cancer-related breakage of PSA complexes with serum-circulating proteins, and proved its facility for stratification of primary and metastatic PCa. PSA’s “Glycan Score” 100% accurately informed about PCa status in a 30-patient cohort, while serum PSA’s concentration correctly classified only 53% of PCa patients and did not inform about their PCa status. The Glycan Score liquid-biopsy test thus has a huge potential for accurate diagnosis and staging of PCa, enabling mass-screening program progress and advanced PCa treatment monitoring.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"42 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid-Biopsy Glycan Score Biomarker Accurately Indicates and Stratifies Primary and Metastatic Prostate Cancers\",\"authors\":\"Ana Díaz-Fernández, Mads Ryø Jochumsen, Nana Louise Christensen, Karina Dalsgaard Sørensen, Kirsten Bouchelouche, Michael Borre, Mikkel Holm Vendelbo, Elena E. Ferapontova\",\"doi\":\"10.1021/acs.analchem.4c04316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prostate cancer (PCa) is the most commonly diagnosed cancer in males. Early PCa usually shows no clinical symptoms and its primary diagnosis is currently guided by liquid-biopsy testing of serum prostate-specific antigen (PSA). This testing suffers from high false-positive and false-negative rates. Identifying new biomarkers for precise liquid-biopsy detection of PCa is, thus, an acute clinical request. Here, by using an advanced dual-functional aptamer assay, we quantified the extent of glycosylation of PSA circulating in cancer patients’ serum, linked it to cancer-related breakage of PSA complexes with serum-circulating proteins, and proved its facility for stratification of primary and metastatic PCa. PSA’s “Glycan Score” 100% accurately informed about PCa status in a 30-patient cohort, while serum PSA’s concentration correctly classified only 53% of PCa patients and did not inform about their PCa status. The Glycan Score liquid-biopsy test thus has a huge potential for accurate diagnosis and staging of PCa, enabling mass-screening program progress and advanced PCa treatment monitoring.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c04316\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04316","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Liquid-Biopsy Glycan Score Biomarker Accurately Indicates and Stratifies Primary and Metastatic Prostate Cancers
Prostate cancer (PCa) is the most commonly diagnosed cancer in males. Early PCa usually shows no clinical symptoms and its primary diagnosis is currently guided by liquid-biopsy testing of serum prostate-specific antigen (PSA). This testing suffers from high false-positive and false-negative rates. Identifying new biomarkers for precise liquid-biopsy detection of PCa is, thus, an acute clinical request. Here, by using an advanced dual-functional aptamer assay, we quantified the extent of glycosylation of PSA circulating in cancer patients’ serum, linked it to cancer-related breakage of PSA complexes with serum-circulating proteins, and proved its facility for stratification of primary and metastatic PCa. PSA’s “Glycan Score” 100% accurately informed about PCa status in a 30-patient cohort, while serum PSA’s concentration correctly classified only 53% of PCa patients and did not inform about their PCa status. The Glycan Score liquid-biopsy test thus has a huge potential for accurate diagnosis and staging of PCa, enabling mass-screening program progress and advanced PCa treatment monitoring.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.