Barun Das Gupta, Amit Kar, Seha Singha, Srijon Gayen, Sandipan Jana, Nanaocha Sharma, Pallab K Haldar, Pulok Kumar Mukherjee
{"title":"基于代谢物分析和综合网络药理学的 Benincasa hispida (Thunb.) Cogn.果对非胰岛素依赖型糖尿病的作用机制。","authors":"Barun Das Gupta, Amit Kar, Seha Singha, Srijon Gayen, Sandipan Jana, Nanaocha Sharma, Pallab K Haldar, Pulok Kumar Mukherjee","doi":"10.1002/pca.3476","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Benincasa hispida (Thunb.) Cogn. (Cucurbitaceae) is an essential food plant in India possessing antihyperglycemic and antihyperlipidemic activities.</p><p><strong>Objective: </strong>The objective included comparative estimation of α-glucosidase and α-amylase enzyme inhibition potential of B. hispida fractions prepared by microwave-assisted extraction and prediction of metabolite interaction against non-insulin-dependent diabetes mellitus by metabolite profiling based network pharmacology analysis.</p><p><strong>Methods: </strong>A validated microwave-assisted extraction method was employed to obtain different fractions of B. hispida fruits. The in vitro enzyme assay was done with p-nitrophenyl-α-D-glucopyranoside and acarbose as standard to evaluate antidiabetic potential. The phytomolecules present in the active fraction were identified by UHPLC-QToF-MS/MS analysis. Network pharmacology analysis gave possible gene and disease association, combination synergy network, and predicted probable mechanism of action.</p><p><strong>Results: </strong>The highest enzyme inhibition potential (IC<sub>50</sub>) was shown by the ethyl acetate fraction (0.546 ± 0.17 mg/mL and 1.134 ± 0.42 mg/mL) compared to acarbose (0.298 ± 0.08 mg/mL and 0.532 ± 0.38 mg/mL), respectively, for α-glucosidase and α-amylase addressing the potential role in ameliorating non-insulin-dependent diabetes mellitus. Metabolite profiling resulted in the identification of 17 metabolites, and a synergy between the identified molecules suggested multimolecule action in the amelioration of non-insulin-dependent diabetes mellitus through insulin resistance pathway, AMPK signaling pathway, PPAR signaling pathway, and PI3K-Akt signaling pathway. Combination synergy of identified molecules was observed through a multitarget approach to manage non-insulin-dependent diabetes mellitus.</p><p><strong>Conclusion: </strong>Polyphenol-enriched fraction of B. hispida fruits and identified phytocompounds ameliorate non-insulin-dependent diabetes mellitus. Thus, enriched extract of B. hispida can be further investigated in order to develop high-quality, safe, and effective products for the management of non-insulin-dependent diabetes mellitus.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolite Profiling and Integrated Network Pharmacology Based Mechanism of Benincasa hispida (Thunb.) Cogn. Fruit Against Non-insulin-Dependent Diabetes Mellitus.\",\"authors\":\"Barun Das Gupta, Amit Kar, Seha Singha, Srijon Gayen, Sandipan Jana, Nanaocha Sharma, Pallab K Haldar, Pulok Kumar Mukherjee\",\"doi\":\"10.1002/pca.3476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Benincasa hispida (Thunb.) Cogn. (Cucurbitaceae) is an essential food plant in India possessing antihyperglycemic and antihyperlipidemic activities.</p><p><strong>Objective: </strong>The objective included comparative estimation of α-glucosidase and α-amylase enzyme inhibition potential of B. hispida fractions prepared by microwave-assisted extraction and prediction of metabolite interaction against non-insulin-dependent diabetes mellitus by metabolite profiling based network pharmacology analysis.</p><p><strong>Methods: </strong>A validated microwave-assisted extraction method was employed to obtain different fractions of B. hispida fruits. The in vitro enzyme assay was done with p-nitrophenyl-α-D-glucopyranoside and acarbose as standard to evaluate antidiabetic potential. The phytomolecules present in the active fraction were identified by UHPLC-QToF-MS/MS analysis. Network pharmacology analysis gave possible gene and disease association, combination synergy network, and predicted probable mechanism of action.</p><p><strong>Results: </strong>The highest enzyme inhibition potential (IC<sub>50</sub>) was shown by the ethyl acetate fraction (0.546 ± 0.17 mg/mL and 1.134 ± 0.42 mg/mL) compared to acarbose (0.298 ± 0.08 mg/mL and 0.532 ± 0.38 mg/mL), respectively, for α-glucosidase and α-amylase addressing the potential role in ameliorating non-insulin-dependent diabetes mellitus. Metabolite profiling resulted in the identification of 17 metabolites, and a synergy between the identified molecules suggested multimolecule action in the amelioration of non-insulin-dependent diabetes mellitus through insulin resistance pathway, AMPK signaling pathway, PPAR signaling pathway, and PI3K-Akt signaling pathway. Combination synergy of identified molecules was observed through a multitarget approach to manage non-insulin-dependent diabetes mellitus.</p><p><strong>Conclusion: </strong>Polyphenol-enriched fraction of B. hispida fruits and identified phytocompounds ameliorate non-insulin-dependent diabetes mellitus. Thus, enriched extract of B. hispida can be further investigated in order to develop high-quality, safe, and effective products for the management of non-insulin-dependent diabetes mellitus.</p>\",\"PeriodicalId\":20095,\"journal\":{\"name\":\"Phytochemical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytochemical Analysis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pca.3476\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemical Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pca.3476","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Metabolite Profiling and Integrated Network Pharmacology Based Mechanism of Benincasa hispida (Thunb.) Cogn. Fruit Against Non-insulin-Dependent Diabetes Mellitus.
Introduction: Benincasa hispida (Thunb.) Cogn. (Cucurbitaceae) is an essential food plant in India possessing antihyperglycemic and antihyperlipidemic activities.
Objective: The objective included comparative estimation of α-glucosidase and α-amylase enzyme inhibition potential of B. hispida fractions prepared by microwave-assisted extraction and prediction of metabolite interaction against non-insulin-dependent diabetes mellitus by metabolite profiling based network pharmacology analysis.
Methods: A validated microwave-assisted extraction method was employed to obtain different fractions of B. hispida fruits. The in vitro enzyme assay was done with p-nitrophenyl-α-D-glucopyranoside and acarbose as standard to evaluate antidiabetic potential. The phytomolecules present in the active fraction were identified by UHPLC-QToF-MS/MS analysis. Network pharmacology analysis gave possible gene and disease association, combination synergy network, and predicted probable mechanism of action.
Results: The highest enzyme inhibition potential (IC50) was shown by the ethyl acetate fraction (0.546 ± 0.17 mg/mL and 1.134 ± 0.42 mg/mL) compared to acarbose (0.298 ± 0.08 mg/mL and 0.532 ± 0.38 mg/mL), respectively, for α-glucosidase and α-amylase addressing the potential role in ameliorating non-insulin-dependent diabetes mellitus. Metabolite profiling resulted in the identification of 17 metabolites, and a synergy between the identified molecules suggested multimolecule action in the amelioration of non-insulin-dependent diabetes mellitus through insulin resistance pathway, AMPK signaling pathway, PPAR signaling pathway, and PI3K-Akt signaling pathway. Combination synergy of identified molecules was observed through a multitarget approach to manage non-insulin-dependent diabetes mellitus.
Conclusion: Polyphenol-enriched fraction of B. hispida fruits and identified phytocompounds ameliorate non-insulin-dependent diabetes mellitus. Thus, enriched extract of B. hispida can be further investigated in order to develop high-quality, safe, and effective products for the management of non-insulin-dependent diabetes mellitus.
期刊介绍:
Phytochemical Analysis is devoted to the publication of original articles concerning the development, improvement, validation and/or extension of application of analytical methodology in the plant sciences. The spectrum of coverage is broad, encompassing methods and techniques relevant to the detection (including bio-screening), extraction, separation, purification, identification and quantification of compounds in plant biochemistry, plant cellular and molecular biology, plant biotechnology, the food sciences, agriculture and horticulture. The Journal publishes papers describing significant novelty in the analysis of whole plants (including algae), plant cells, tissues and organs, plant-derived extracts and plant products (including those which have been partially or completely refined for use in the food, agrochemical, pharmaceutical and related industries). All forms of physical, chemical, biochemical, spectroscopic, radiometric, electrometric, chromatographic, metabolomic and chemometric investigations of plant products (monomeric species as well as polymeric molecules such as nucleic acids, proteins, lipids and carbohydrates) are included within the remit of the Journal. Papers dealing with novel methods relating to areas such as data handling/ data mining in plant sciences will also be welcomed.