Mengmeng Li, Tingting Wu, Zhiyang Zhao, Lei Li, Tongxin Shan, Hui Wu, Robert Zboray, Francesco Bernasconi, Yongjie Cui, Peiying Hu, Wim J. Malfait, Qinghua Zhang, Shanyu Zhao
{"title":"多尺度制造可回收聚酰亚胺复合气凝胶","authors":"Mengmeng Li, Tingting Wu, Zhiyang Zhao, Lei Li, Tongxin Shan, Hui Wu, Robert Zboray, Francesco Bernasconi, Yongjie Cui, Peiying Hu, Wim J. Malfait, Qinghua Zhang, Shanyu Zhao","doi":"10.1002/adma.202411599","DOIUrl":null,"url":null,"abstract":"Mitigating embodied emissions is becoming increasingly crucial as the energy supply shifts toward more sustainable sources. Bio-based materials present a potentially more sustainable alternative to synthetic polymers; however, it often do not yet match the performance of synthetic materials. Given the ongoing reliance on high-performance, high-environmental-impact materials, it is essential to ensure their complete recyclability. Aerogels, recognized by IUPAC as one of the top ten emerging technologies, are witnessing rapid market growth in thermal insulation and thermal protection applications. In certain applications, synthetic and composite aerogels exhibit superior performance, particularly under high temperatures. Here, molecular simulation tools are employed to elucidate the interaction forces between polymers and solvents, develop a recycling strategy for polyimide-based aerogels, and demonstrate their application in thermal protection for firefighter textiles and thermal runaway protection for Li-ion battery packs. These composites are engineered for disassembly, allowing for the complete recovery of starting materials without any degradation of components after multiple recycling cycles. The recyclable composites can be fabricated using various manufacturing techniques to produce fibers (1D), membranes (2D), and complex structures (3D). This unique combination of outstanding performance and excellent recyclability facilitates the sustainable utilization of aerogels in protective clothing, electric mobility, consumer goods, and aeronautics.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"36 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Manufacturing of Recyclable Polyimide Composite Aerogels\",\"authors\":\"Mengmeng Li, Tingting Wu, Zhiyang Zhao, Lei Li, Tongxin Shan, Hui Wu, Robert Zboray, Francesco Bernasconi, Yongjie Cui, Peiying Hu, Wim J. Malfait, Qinghua Zhang, Shanyu Zhao\",\"doi\":\"10.1002/adma.202411599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mitigating embodied emissions is becoming increasingly crucial as the energy supply shifts toward more sustainable sources. Bio-based materials present a potentially more sustainable alternative to synthetic polymers; however, it often do not yet match the performance of synthetic materials. Given the ongoing reliance on high-performance, high-environmental-impact materials, it is essential to ensure their complete recyclability. Aerogels, recognized by IUPAC as one of the top ten emerging technologies, are witnessing rapid market growth in thermal insulation and thermal protection applications. In certain applications, synthetic and composite aerogels exhibit superior performance, particularly under high temperatures. Here, molecular simulation tools are employed to elucidate the interaction forces between polymers and solvents, develop a recycling strategy for polyimide-based aerogels, and demonstrate their application in thermal protection for firefighter textiles and thermal runaway protection for Li-ion battery packs. These composites are engineered for disassembly, allowing for the complete recovery of starting materials without any degradation of components after multiple recycling cycles. The recyclable composites can be fabricated using various manufacturing techniques to produce fibers (1D), membranes (2D), and complex structures (3D). This unique combination of outstanding performance and excellent recyclability facilitates the sustainable utilization of aerogels in protective clothing, electric mobility, consumer goods, and aeronautics.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202411599\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202411599","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Multiscale Manufacturing of Recyclable Polyimide Composite Aerogels
Mitigating embodied emissions is becoming increasingly crucial as the energy supply shifts toward more sustainable sources. Bio-based materials present a potentially more sustainable alternative to synthetic polymers; however, it often do not yet match the performance of synthetic materials. Given the ongoing reliance on high-performance, high-environmental-impact materials, it is essential to ensure their complete recyclability. Aerogels, recognized by IUPAC as one of the top ten emerging technologies, are witnessing rapid market growth in thermal insulation and thermal protection applications. In certain applications, synthetic and composite aerogels exhibit superior performance, particularly under high temperatures. Here, molecular simulation tools are employed to elucidate the interaction forces between polymers and solvents, develop a recycling strategy for polyimide-based aerogels, and demonstrate their application in thermal protection for firefighter textiles and thermal runaway protection for Li-ion battery packs. These composites are engineered for disassembly, allowing for the complete recovery of starting materials without any degradation of components after multiple recycling cycles. The recyclable composites can be fabricated using various manufacturing techniques to produce fibers (1D), membranes (2D), and complex structures (3D). This unique combination of outstanding performance and excellent recyclability facilitates the sustainable utilization of aerogels in protective clothing, electric mobility, consumer goods, and aeronautics.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.