采用双变形折纸结构的软体爬行机器人

IF 3.4 Q2 ENGINEERING, BIOMEDICAL
Xuyang Ren;Yu Huan;Matteo Cianchetti;Shuxin Wang;Paolo Dario;Gastone Ciuti
{"title":"采用双变形折纸结构的软体爬行机器人","authors":"Xuyang Ren;Yu Huan;Matteo Cianchetti;Shuxin Wang;Paolo Dario;Gastone Ciuti","doi":"10.1109/TMRB.2024.3472858","DOIUrl":null,"url":null,"abstract":"Soft crawling robots demonstrated high compliance and effectiveness in performing complex tasks in unstructured and harsh environments. They can navigate inside constrained spaces and provide superior adaptability. This paper presents a soft crawling robot with a modified Yoshimura origami-based central chamber (elongation/contraction actuator) and four electrostatic adhesion feet (anchoring elements). It was designed to perform linear and steering locomotion under specific actuation sequences to avoid obstacles autonomously; it features a height-adjustable ability to squeeze under low gaps. A dual-morphing mechanism, enabling the origami-based chamber to operate with two locomotion modalities, was investigated to provide a simple but effective actuation method. Tests were carried out to validate the dual-morphing mechanism and to characterise the crawling robot’s performance. Experimental tests successfully demonstrated the robot’s capabilities, e.g., locomotion under low gaps (i.e., 20 mm, 66% of the height of the robot), obstacle avoidance, climbing on a sloped surface (i.e., 15 deg), and lifting and carrying objects (i.e., 80 g, ten times its weight).","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"6 4","pages":"1771-1780"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soft Crawling Robot With a Dual-Morphing Origami Configuration\",\"authors\":\"Xuyang Ren;Yu Huan;Matteo Cianchetti;Shuxin Wang;Paolo Dario;Gastone Ciuti\",\"doi\":\"10.1109/TMRB.2024.3472858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft crawling robots demonstrated high compliance and effectiveness in performing complex tasks in unstructured and harsh environments. They can navigate inside constrained spaces and provide superior adaptability. This paper presents a soft crawling robot with a modified Yoshimura origami-based central chamber (elongation/contraction actuator) and four electrostatic adhesion feet (anchoring elements). It was designed to perform linear and steering locomotion under specific actuation sequences to avoid obstacles autonomously; it features a height-adjustable ability to squeeze under low gaps. A dual-morphing mechanism, enabling the origami-based chamber to operate with two locomotion modalities, was investigated to provide a simple but effective actuation method. Tests were carried out to validate the dual-morphing mechanism and to characterise the crawling robot’s performance. Experimental tests successfully demonstrated the robot’s capabilities, e.g., locomotion under low gaps (i.e., 20 mm, 66% of the height of the robot), obstacle avoidance, climbing on a sloped surface (i.e., 15 deg), and lifting and carrying objects (i.e., 80 g, ten times its weight).\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":\"6 4\",\"pages\":\"1771-1780\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10715692/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10715692/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

软爬行机器人在非结构化和恶劣环境中执行复杂任务时表现出很高的顺应性和有效性。它们可以在受限空间内导航,并提供出色的适应性。本文介绍了一种软爬行机器人,它具有一个基于吉村折纸的改进型中央腔(伸长/收缩致动器)和四个静电附着脚(锚定元件)。它的设计目的是在特定的致动序列下进行线性和转向运动,以自主避开障碍物;它的特点是高度可调,能够在低间隙下进行挤压。为了提供一种简单而有效的驱动方法,研究人员研究了一种双变形机制,使基于折纸的舱体能够以两种运动模式运行。为验证双变形机制和鉴定爬行机器人的性能,进行了相关测试。实验测试成功证明了机器人的能力,例如,在低间隙(即 20 毫米,机器人高度的 66%)下运动、避开障碍物、在倾斜表面(即 15 度)上攀爬,以及举起和搬运物体(即 80 克,其重量的 10 倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soft Crawling Robot With a Dual-Morphing Origami Configuration
Soft crawling robots demonstrated high compliance and effectiveness in performing complex tasks in unstructured and harsh environments. They can navigate inside constrained spaces and provide superior adaptability. This paper presents a soft crawling robot with a modified Yoshimura origami-based central chamber (elongation/contraction actuator) and four electrostatic adhesion feet (anchoring elements). It was designed to perform linear and steering locomotion under specific actuation sequences to avoid obstacles autonomously; it features a height-adjustable ability to squeeze under low gaps. A dual-morphing mechanism, enabling the origami-based chamber to operate with two locomotion modalities, was investigated to provide a simple but effective actuation method. Tests were carried out to validate the dual-morphing mechanism and to characterise the crawling robot’s performance. Experimental tests successfully demonstrated the robot’s capabilities, e.g., locomotion under low gaps (i.e., 20 mm, 66% of the height of the robot), obstacle avoidance, climbing on a sloped surface (i.e., 15 deg), and lifting and carrying objects (i.e., 80 g, ten times its weight).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信