外科手术机器人任务自动化的视觉运动策略学习

IF 3.4 Q2 ENGINEERING, BIOMEDICAL
Junhui Huang;Qingxin Shi;Dongsheng Xie;Yiming Ma;Xiaoming Liu;Changsheng Li;Xingguang Duan
{"title":"外科手术机器人任务自动化的视觉运动策略学习","authors":"Junhui Huang;Qingxin Shi;Dongsheng Xie;Yiming Ma;Xiaoming Liu;Changsheng Li;Xingguang Duan","doi":"10.1109/TMRB.2024.3464090","DOIUrl":null,"url":null,"abstract":"With the increasing adoption of robotic surgery systems, the need for automated surgical tasks has become more pressing. Recent learning-based approaches provide solutions to surgical automation but typically rely on low-dimensional observations. To further imitate the actions of surgeons in an end-to-end paradigm, this paper introduces a novel visual-based approach to automating surgical tasks using generative imitation learning for robotic systems. We develop a hybrid model integrating state space models transformer, and conditional variational autoencoders (CVAE) to enhance performance and generalization called ACMT. The proposed model, leveraging the Mamba block and multi-head cross-attention mechanisms for sequential modeling, achieves a 75-100% success rate with just 100 demonstrations for most of the tasks. This work significantly advances data-driven automation in surgical robotics, aiming to alleviate the burden on surgeons and improve surgical outcomes.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visuomotor Policy Learning for Task Automation of Surgical Robot\",\"authors\":\"Junhui Huang;Qingxin Shi;Dongsheng Xie;Yiming Ma;Xiaoming Liu;Changsheng Li;Xingguang Duan\",\"doi\":\"10.1109/TMRB.2024.3464090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing adoption of robotic surgery systems, the need for automated surgical tasks has become more pressing. Recent learning-based approaches provide solutions to surgical automation but typically rely on low-dimensional observations. To further imitate the actions of surgeons in an end-to-end paradigm, this paper introduces a novel visual-based approach to automating surgical tasks using generative imitation learning for robotic systems. We develop a hybrid model integrating state space models transformer, and conditional variational autoencoders (CVAE) to enhance performance and generalization called ACMT. The proposed model, leveraging the Mamba block and multi-head cross-attention mechanisms for sequential modeling, achieves a 75-100% success rate with just 100 demonstrations for most of the tasks. This work significantly advances data-driven automation in surgical robotics, aiming to alleviate the burden on surgeons and improve surgical outcomes.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10685114/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10685114/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着机器人手术系统的日益普及,对自动化手术任务的需求变得更加迫切。近期基于学习的方法为手术自动化提供了解决方案,但通常依赖于低维观察。为了在端到端范例中进一步模仿外科医生的操作,本文介绍了一种基于视觉的新方法,利用机器人系统的生成模仿学习实现手术任务自动化。我们开发了一种集成了状态空间模型变换器和条件变异自动编码器(CVAE)的混合模型,以提高性能和泛化能力,该模型被称为 ACMT。所提出的模型利用 Mamba 块和多头交叉注意机制进行顺序建模,在大多数任务中只需演示 100 次就能达到 75-100% 的成功率。这项工作极大地推动了手术机器人中数据驱动的自动化,旨在减轻外科医生的负担,改善手术效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visuomotor Policy Learning for Task Automation of Surgical Robot
With the increasing adoption of robotic surgery systems, the need for automated surgical tasks has become more pressing. Recent learning-based approaches provide solutions to surgical automation but typically rely on low-dimensional observations. To further imitate the actions of surgeons in an end-to-end paradigm, this paper introduces a novel visual-based approach to automating surgical tasks using generative imitation learning for robotic systems. We develop a hybrid model integrating state space models transformer, and conditional variational autoencoders (CVAE) to enhance performance and generalization called ACMT. The proposed model, leveraging the Mamba block and multi-head cross-attention mechanisms for sequential modeling, achieves a 75-100% success rate with just 100 demonstrations for most of the tasks. This work significantly advances data-driven automation in surgical robotics, aiming to alleviate the burden on surgeons and improve surgical outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信