用于微创手术的磁性锚定和电缆驱动内窥镜的设计、分析和初步验证

IF 3.4 Q2 ENGINEERING, BIOMEDICAL
Jixiu Li;Tao Zhang;Truman Cheng;Yehui Li;Calvin Sze Hang Ng;Philip Wai Yan Chiu;Zheng Li
{"title":"用于微创手术的磁性锚定和电缆驱动内窥镜的设计、分析和初步验证","authors":"Jixiu Li;Tao Zhang;Truman Cheng;Yehui Li;Calvin Sze Hang Ng;Philip Wai Yan Chiu;Zheng Li","doi":"10.1109/TMRB.2024.3472833","DOIUrl":null,"url":null,"abstract":"Magnetic anchored and guided system(MAGS) is a promising solution for minimally invasive surgery, particularly in the realm of endoscope robotics. However, the inherent tight tissue contact in MAGS limits certain degrees of freedom, constraining the surgeon’s ability to adjust the field of view. To address this, we propose a novel solution by combining magnetic actuation with a cable-driven flexible link. Our study encompasses the design, analysis of magnetic force/torque, and kinematics of the flexible link. One prototype was fabricated, and experiments, including the evaluation of magnetic coupling performance and the motion of the flexible link, were conducted. These experiments validated both the theoretical modeling and the functionality of the magnetic endoscope system.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Analysis, and Preliminary Validation of Magnetic Anchored and Cable Driven Endoscope for Minimally Invasive Surgery\",\"authors\":\"Jixiu Li;Tao Zhang;Truman Cheng;Yehui Li;Calvin Sze Hang Ng;Philip Wai Yan Chiu;Zheng Li\",\"doi\":\"10.1109/TMRB.2024.3472833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic anchored and guided system(MAGS) is a promising solution for minimally invasive surgery, particularly in the realm of endoscope robotics. However, the inherent tight tissue contact in MAGS limits certain degrees of freedom, constraining the surgeon’s ability to adjust the field of view. To address this, we propose a novel solution by combining magnetic actuation with a cable-driven flexible link. Our study encompasses the design, analysis of magnetic force/torque, and kinematics of the flexible link. One prototype was fabricated, and experiments, including the evaluation of magnetic coupling performance and the motion of the flexible link, were conducted. These experiments validated both the theoretical modeling and the functionality of the magnetic endoscope system.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10704698/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10704698/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

磁锚定和制导系统(MAGS)是微创手术的一种前景广阔的解决方案,尤其是在内窥镜机器人领域。然而,MAGS 固有的紧密组织接触限制了某些自由度,制约了外科医生调整视野的能力。为了解决这个问题,我们提出了一种新颖的解决方案,将磁驱动与电缆驱动柔性链接相结合。我们的研究包括柔性链接的设计、磁力/扭矩分析和运动学。我们制作了一个原型,并进行了实验,包括磁耦合性能和柔性链接运动的评估。这些实验验证了磁性内窥镜系统的理论建模和功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design, Analysis, and Preliminary Validation of Magnetic Anchored and Cable Driven Endoscope for Minimally Invasive Surgery
Magnetic anchored and guided system(MAGS) is a promising solution for minimally invasive surgery, particularly in the realm of endoscope robotics. However, the inherent tight tissue contact in MAGS limits certain degrees of freedom, constraining the surgeon’s ability to adjust the field of view. To address this, we propose a novel solution by combining magnetic actuation with a cable-driven flexible link. Our study encompasses the design, analysis of magnetic force/torque, and kinematics of the flexible link. One prototype was fabricated, and experiments, including the evaluation of magnetic coupling performance and the motion of the flexible link, were conducted. These experiments validated both the theoretical modeling and the functionality of the magnetic endoscope system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信