Fabiola Guzmán-Mejía, Daniel Efrain Molotla-Torres, Marycarmen Godínez-Victoria, Ximena Valdes-Hilarios, Elizabeth Sánchez-Miranda, Rigoberto Oros-Pantoja, Maria Elisa Drago-Serrano
{"title":"牛乳蛋白衍生物对肠道渗透性调节的内部观察","authors":"Fabiola Guzmán-Mejía, Daniel Efrain Molotla-Torres, Marycarmen Godínez-Victoria, Ximena Valdes-Hilarios, Elizabeth Sánchez-Miranda, Rigoberto Oros-Pantoja, Maria Elisa Drago-Serrano","doi":"10.1002/mnfr.202400384","DOIUrl":null,"url":null,"abstract":"<p>The prime function of the epithelium is to regulate the intestinal permeability; the latter is a quantitative parameter that refers to the measurement of the rate of passage of solutes through the epithelial monolayer. Function of epithelial monolayer depends on the expression of protein complexes known as tight junction proteins; whose function and expression can be disrupted under conditions of inflammation including irritable bowel disease (IBD), intestinal infections, and high-fat diets, among others. This manuscript is focused to outline the effects of bovine milk protein derivatives on the intestinal permeability addressed mostly in animal models in which the intestinal barrier is disrupted. At present, the properties of bovine milk protein derivatives on intestinal permeability have been scarcely documented in humans, but evidence raised from clinical trials provides promising findings of potential application of colostrum to control of the intestinal permeability in critically ill patients, users of non-steroid anti-inflammatory drugs, like athletes and militia members.</p>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 22","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202400384","citationCount":"0","resultStr":"{\"title\":\"Looking Inside of the Intestinal Permeability Regulation by Protein-Derivatives from Bovine Milk\",\"authors\":\"Fabiola Guzmán-Mejía, Daniel Efrain Molotla-Torres, Marycarmen Godínez-Victoria, Ximena Valdes-Hilarios, Elizabeth Sánchez-Miranda, Rigoberto Oros-Pantoja, Maria Elisa Drago-Serrano\",\"doi\":\"10.1002/mnfr.202400384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The prime function of the epithelium is to regulate the intestinal permeability; the latter is a quantitative parameter that refers to the measurement of the rate of passage of solutes through the epithelial monolayer. Function of epithelial monolayer depends on the expression of protein complexes known as tight junction proteins; whose function and expression can be disrupted under conditions of inflammation including irritable bowel disease (IBD), intestinal infections, and high-fat diets, among others. This manuscript is focused to outline the effects of bovine milk protein derivatives on the intestinal permeability addressed mostly in animal models in which the intestinal barrier is disrupted. At present, the properties of bovine milk protein derivatives on intestinal permeability have been scarcely documented in humans, but evidence raised from clinical trials provides promising findings of potential application of colostrum to control of the intestinal permeability in critically ill patients, users of non-steroid anti-inflammatory drugs, like athletes and militia members.</p>\",\"PeriodicalId\":212,\"journal\":{\"name\":\"Molecular Nutrition & Food Research\",\"volume\":\"68 22\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202400384\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Nutrition & Food Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mnfr.202400384\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mnfr.202400384","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Looking Inside of the Intestinal Permeability Regulation by Protein-Derivatives from Bovine Milk
The prime function of the epithelium is to regulate the intestinal permeability; the latter is a quantitative parameter that refers to the measurement of the rate of passage of solutes through the epithelial monolayer. Function of epithelial monolayer depends on the expression of protein complexes known as tight junction proteins; whose function and expression can be disrupted under conditions of inflammation including irritable bowel disease (IBD), intestinal infections, and high-fat diets, among others. This manuscript is focused to outline the effects of bovine milk protein derivatives on the intestinal permeability addressed mostly in animal models in which the intestinal barrier is disrupted. At present, the properties of bovine milk protein derivatives on intestinal permeability have been scarcely documented in humans, but evidence raised from clinical trials provides promising findings of potential application of colostrum to control of the intestinal permeability in critically ill patients, users of non-steroid anti-inflammatory drugs, like athletes and militia members.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.