Martin Enmark, Ilaria Furlan, Porya Habibollahi, Christian Manz, Torgny Fornstedt, Jörgen Samuelsson, Eivor Örnskov, Manasses Jora
{"title":"利用盐介导离子对反相液相色谱法扩展 siRNA 非变性分析工具箱","authors":"Martin Enmark, Ilaria Furlan, Porya Habibollahi, Christian Manz, Torgny Fornstedt, Jörgen Samuelsson, Eivor Örnskov, Manasses Jora","doi":"10.1021/acs.analchem.4c05248","DOIUrl":null,"url":null,"abstract":"Short interfering RNA (siRNA) represents a rapidly expanding class of marketed oligonucleotide therapeutics. Due to its double-stranded nature, the characterization of siRNA is twofold: (i) at the single-strand (denaturing) level for impurity profiling and (ii) at the intact (nondenaturing) level to confirm duplex formation and quantify excess single strands (including single strand-derived impurities). While denaturing analysis can be carried out using conventional ion-pair reversed-phase liquid chromatography (IP-RPLC), nondenaturing characterization of siRNA is a significantly less straightforward task. Typical IP-RPLC conditions have an intrinsic denaturing effect on siRNA, thereby limiting the development of viable approaches for the intact duplex analysis. In this study, we demonstrate, through the design of experiments of siRNA melting temperatures and chromatography analyses, that the simple addition of salts, such as phosphate-buffered saline and ammonium acetate, to eluents enhances the suitability of IP-RPLC for the nondenaturing analysis of siRNA during both UV- and mass spectrometry-based analysis. This work represents a milestone in overcoming the challenges associated with nondenaturing analysis of siRNAs by IP-RPLC and offers a fresh angle for exploring IP-RPLC of siRNAs.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"29 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expanding the Analytical Toolbox for the Nondenaturing Analysis of siRNAs with Salt-Mediated Ion-Pair Reversed-Phase Liquid Chromatography\",\"authors\":\"Martin Enmark, Ilaria Furlan, Porya Habibollahi, Christian Manz, Torgny Fornstedt, Jörgen Samuelsson, Eivor Örnskov, Manasses Jora\",\"doi\":\"10.1021/acs.analchem.4c05248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short interfering RNA (siRNA) represents a rapidly expanding class of marketed oligonucleotide therapeutics. Due to its double-stranded nature, the characterization of siRNA is twofold: (i) at the single-strand (denaturing) level for impurity profiling and (ii) at the intact (nondenaturing) level to confirm duplex formation and quantify excess single strands (including single strand-derived impurities). While denaturing analysis can be carried out using conventional ion-pair reversed-phase liquid chromatography (IP-RPLC), nondenaturing characterization of siRNA is a significantly less straightforward task. Typical IP-RPLC conditions have an intrinsic denaturing effect on siRNA, thereby limiting the development of viable approaches for the intact duplex analysis. In this study, we demonstrate, through the design of experiments of siRNA melting temperatures and chromatography analyses, that the simple addition of salts, such as phosphate-buffered saline and ammonium acetate, to eluents enhances the suitability of IP-RPLC for the nondenaturing analysis of siRNA during both UV- and mass spectrometry-based analysis. This work represents a milestone in overcoming the challenges associated with nondenaturing analysis of siRNAs by IP-RPLC and offers a fresh angle for exploring IP-RPLC of siRNAs.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c05248\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05248","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Expanding the Analytical Toolbox for the Nondenaturing Analysis of siRNAs with Salt-Mediated Ion-Pair Reversed-Phase Liquid Chromatography
Short interfering RNA (siRNA) represents a rapidly expanding class of marketed oligonucleotide therapeutics. Due to its double-stranded nature, the characterization of siRNA is twofold: (i) at the single-strand (denaturing) level for impurity profiling and (ii) at the intact (nondenaturing) level to confirm duplex formation and quantify excess single strands (including single strand-derived impurities). While denaturing analysis can be carried out using conventional ion-pair reversed-phase liquid chromatography (IP-RPLC), nondenaturing characterization of siRNA is a significantly less straightforward task. Typical IP-RPLC conditions have an intrinsic denaturing effect on siRNA, thereby limiting the development of viable approaches for the intact duplex analysis. In this study, we demonstrate, through the design of experiments of siRNA melting temperatures and chromatography analyses, that the simple addition of salts, such as phosphate-buffered saline and ammonium acetate, to eluents enhances the suitability of IP-RPLC for the nondenaturing analysis of siRNA during both UV- and mass spectrometry-based analysis. This work represents a milestone in overcoming the challenges associated with nondenaturing analysis of siRNAs by IP-RPLC and offers a fresh angle for exploring IP-RPLC of siRNAs.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.