Wen Hao , Jingwen He , Jie Wu , Lin Cai , Yifei Wang , Guozhen Fang , Shuo Wang
{"title":"基于双单体分子印迹聚合物的内置电位调节和外源激发电化学发光传感器用于噻苯咪唑的生物模拟检测","authors":"Wen Hao , Jingwen He , Jie Wu , Lin Cai , Yifei Wang , Guozhen Fang , Shuo Wang","doi":"10.1016/j.foodchem.2024.141984","DOIUrl":null,"url":null,"abstract":"<div><div>Thiabendazole (TBZ) residues in food pose a serious threat to public health. Herein, an ultrasensitive molecularly imprinted electrochemiluminescence sensor (MIECLS) was developed to detect TBZ, using electron autoregulation in nitrogen-doped graphdiyne‑copper nanowires (NGDY-CuNWs) composite luminophore and cyclic amplification strategy of tin disulfide nanosheets (SnS<sub>2</sub>NSs). NGDY-CuNWs composite luminophores were formed by spontaneous chemisorption to provide electrochemiluminescence signals, and the charge redistribution in it resulted in a built-in potential that improved the electron transfer and redox reaction rate. The cyclic transformation of electron pairs (Sn<sup>2+</sup>/Sn<sup>4+</sup>) on SnS<sub>2</sub>NSs catalyzed the generation of sulfate anion radicals to amplify electrochemiluminescence signals. Due to the complementary and synergistic interaction of functional monomers, high affinity imprinted cavities were formed to recognize TBZ. MIECLS had a wide detection range of 1 × 10<sup>−9</sup>–1 × 10<sup>−5</sup> mol L<sup>−1</sup> with the limit of detection of 1.69 × 10<sup>−10</sup> mol L<sup>−1</sup> and had huge application potential to detect pesticide residues.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"465 ","pages":"Article 141984"},"PeriodicalIF":8.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Built-in potential-regulated and exogenous excited electrochemiluminescence sensor based on dual-monomers molecularly imprinted polymer for the biomimetic detection of thiabendazole\",\"authors\":\"Wen Hao , Jingwen He , Jie Wu , Lin Cai , Yifei Wang , Guozhen Fang , Shuo Wang\",\"doi\":\"10.1016/j.foodchem.2024.141984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thiabendazole (TBZ) residues in food pose a serious threat to public health. Herein, an ultrasensitive molecularly imprinted electrochemiluminescence sensor (MIECLS) was developed to detect TBZ, using electron autoregulation in nitrogen-doped graphdiyne‑copper nanowires (NGDY-CuNWs) composite luminophore and cyclic amplification strategy of tin disulfide nanosheets (SnS<sub>2</sub>NSs). NGDY-CuNWs composite luminophores were formed by spontaneous chemisorption to provide electrochemiluminescence signals, and the charge redistribution in it resulted in a built-in potential that improved the electron transfer and redox reaction rate. The cyclic transformation of electron pairs (Sn<sup>2+</sup>/Sn<sup>4+</sup>) on SnS<sub>2</sub>NSs catalyzed the generation of sulfate anion radicals to amplify electrochemiluminescence signals. Due to the complementary and synergistic interaction of functional monomers, high affinity imprinted cavities were formed to recognize TBZ. MIECLS had a wide detection range of 1 × 10<sup>−9</sup>–1 × 10<sup>−5</sup> mol L<sup>−1</sup> with the limit of detection of 1.69 × 10<sup>−10</sup> mol L<sup>−1</sup> and had huge application potential to detect pesticide residues.</div></div>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"465 \",\"pages\":\"Article 141984\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814624036343\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814624036343","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Built-in potential-regulated and exogenous excited electrochemiluminescence sensor based on dual-monomers molecularly imprinted polymer for the biomimetic detection of thiabendazole
Thiabendazole (TBZ) residues in food pose a serious threat to public health. Herein, an ultrasensitive molecularly imprinted electrochemiluminescence sensor (MIECLS) was developed to detect TBZ, using electron autoregulation in nitrogen-doped graphdiyne‑copper nanowires (NGDY-CuNWs) composite luminophore and cyclic amplification strategy of tin disulfide nanosheets (SnS2NSs). NGDY-CuNWs composite luminophores were formed by spontaneous chemisorption to provide electrochemiluminescence signals, and the charge redistribution in it resulted in a built-in potential that improved the electron transfer and redox reaction rate. The cyclic transformation of electron pairs (Sn2+/Sn4+) on SnS2NSs catalyzed the generation of sulfate anion radicals to amplify electrochemiluminescence signals. Due to the complementary and synergistic interaction of functional monomers, high affinity imprinted cavities were formed to recognize TBZ. MIECLS had a wide detection range of 1 × 10−9–1 × 10−5 mol L−1 with the limit of detection of 1.69 × 10−10 mol L−1 and had huge application potential to detect pesticide residues.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.