Qilin Guo, Huateng Li, Xiuli Wang and Changchun Wang
{"title":"通过二元胶体纳米颗粒的剪切诱导组装,制造出具有全可见光子晶体颜色的效果颜料†。","authors":"Qilin Guo, Huateng Li, Xiuli Wang and Changchun Wang","doi":"10.1039/D4TC02761B","DOIUrl":null,"url":null,"abstract":"<p >Shear-induced assembly technique offers unprecedented scalability in the preparation of versatile photonic crystal materials. Herein, different-sized colloidal nanoparticles were placed within a multicomponent blending system for effective shear co-assembly to enable precise tuning of the photonic band gap and structural colors across the whole visible spectrum of light. The obtained equilibrium structures, such as the crystalline or amorphous states, could be well traded-off for various optical appearances by varying the relative ratios of the blends. A coefficient of variation (CV) value less than 0.3 is crucial to balance strain energy during the cooperative working assembly for manipulating complex functional spatial nanostructures with greatly reduced requirements of colloidal monodispersity. The resultant photonic materials could be further processed into diverse effect pigments with customized and selective optical performances for alternative colorants. This work provides valuable insights into predicting specific visible spectral wavelengths and optical characteristics by controlling photonic nanoarrays through a simple modulation of the composition of multivariate blends.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 43","pages":" 17695-17703"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of effect pigments with full visible photonic crystal colors via the shear-induced assembly of multinary colloidal nanoparticles†\",\"authors\":\"Qilin Guo, Huateng Li, Xiuli Wang and Changchun Wang\",\"doi\":\"10.1039/D4TC02761B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Shear-induced assembly technique offers unprecedented scalability in the preparation of versatile photonic crystal materials. Herein, different-sized colloidal nanoparticles were placed within a multicomponent blending system for effective shear co-assembly to enable precise tuning of the photonic band gap and structural colors across the whole visible spectrum of light. The obtained equilibrium structures, such as the crystalline or amorphous states, could be well traded-off for various optical appearances by varying the relative ratios of the blends. A coefficient of variation (CV) value less than 0.3 is crucial to balance strain energy during the cooperative working assembly for manipulating complex functional spatial nanostructures with greatly reduced requirements of colloidal monodispersity. The resultant photonic materials could be further processed into diverse effect pigments with customized and selective optical performances for alternative colorants. This work provides valuable insights into predicting specific visible spectral wavelengths and optical characteristics by controlling photonic nanoarrays through a simple modulation of the composition of multivariate blends.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 43\",\"pages\":\" 17695-17703\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02761b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02761b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Fabrication of effect pigments with full visible photonic crystal colors via the shear-induced assembly of multinary colloidal nanoparticles†
Shear-induced assembly technique offers unprecedented scalability in the preparation of versatile photonic crystal materials. Herein, different-sized colloidal nanoparticles were placed within a multicomponent blending system for effective shear co-assembly to enable precise tuning of the photonic band gap and structural colors across the whole visible spectrum of light. The obtained equilibrium structures, such as the crystalline or amorphous states, could be well traded-off for various optical appearances by varying the relative ratios of the blends. A coefficient of variation (CV) value less than 0.3 is crucial to balance strain energy during the cooperative working assembly for manipulating complex functional spatial nanostructures with greatly reduced requirements of colloidal monodispersity. The resultant photonic materials could be further processed into diverse effect pigments with customized and selective optical performances for alternative colorants. This work provides valuable insights into predicting specific visible spectral wavelengths and optical characteristics by controlling photonic nanoarrays through a simple modulation of the composition of multivariate blends.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors