原子级空位和优势面对 BiOI 的协同调制,实现双酚 A† 的高效光催化降解

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qicheng He, Zhihao Zhang, Quanxi Zhang and Zhifeng Zhang
{"title":"原子级空位和优势面对 BiOI 的协同调制,实现双酚 A† 的高效光催化降解","authors":"Qicheng He, Zhihao Zhang, Quanxi Zhang and Zhifeng Zhang","doi":"10.1039/D4TC02536A","DOIUrl":null,"url":null,"abstract":"<p >Precise control of desirable facets and vacancies is expected to be a promising strategy for improving the photocatalytic performance of catalysts. Herein, BiOI-1 and BiOI-2 were designed and prepared with (102) and (110) as the dominant exposed facets, respectively. Moreover, BiOI-1 and BiOI-2 correspond to the major types <em>V</em><small><sub>BiIBi</sub></small> and <em>V</em><small><sub>BiOBiBi</sub></small>, respectively. The experimental results showed that the degradation and mineralization of bisphenol A (BPA) by BiOI-2 could reach 100% and 95.90% under visible light irradiation. The excellent catalytic performance of BiOI-2 is attributed to the optimization of the energy band structure by its special facets and vacancies, and the narrow band gap promotes the separation of photogenerated electron–hole pairs. Meanwhile, the strong reducing property of the conduction band (CB) and the strong adsorption capacity for water and oxygen contribute to the fact that BiOI-2 can generate a large amount of reactive oxygen species (ROS). This work provides an atomic-scale understanding of the synergistic effects of vacancies and facets on catalysts and offers new directions in the management of water environmental pollution.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic modulation of BiOI by atomic-level vacancies and dominant facets for efficient photocatalytic degradation of bisphenol A†\",\"authors\":\"Qicheng He, Zhihao Zhang, Quanxi Zhang and Zhifeng Zhang\",\"doi\":\"10.1039/D4TC02536A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Precise control of desirable facets and vacancies is expected to be a promising strategy for improving the photocatalytic performance of catalysts. Herein, BiOI-1 and BiOI-2 were designed and prepared with (102) and (110) as the dominant exposed facets, respectively. Moreover, BiOI-1 and BiOI-2 correspond to the major types <em>V</em><small><sub>BiIBi</sub></small> and <em>V</em><small><sub>BiOBiBi</sub></small>, respectively. The experimental results showed that the degradation and mineralization of bisphenol A (BPA) by BiOI-2 could reach 100% and 95.90% under visible light irradiation. The excellent catalytic performance of BiOI-2 is attributed to the optimization of the energy band structure by its special facets and vacancies, and the narrow band gap promotes the separation of photogenerated electron–hole pairs. Meanwhile, the strong reducing property of the conduction band (CB) and the strong adsorption capacity for water and oxygen contribute to the fact that BiOI-2 can generate a large amount of reactive oxygen species (ROS). This work provides an atomic-scale understanding of the synergistic effects of vacancies and facets on catalysts and offers new directions in the management of water environmental pollution.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02536a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02536a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对理想刻面和空位的精确控制有望成为提高催化剂光催化性能的有效策略。本文设计和制备的 BiOI-1 和 BiOI-2 分别以 (102) 和 (110) 为主要暴露面。此外,BiOI-1 和 BiOI-2 分别对应于 VBiIBi 和 VBiOBiBi 的主要类型。实验结果表明,在可见光照射下,BiOI-2 对双酚 A(BPA)的降解和矿化率分别达到 100%和 95.90%。BiOI-2优异的催化性能得益于其特殊的刻面和空位优化了能带结构,窄带隙促进了光生电子-空穴对的分离。同时,导带(CB)的强还原性以及对水和氧的强吸附能力也是 BiOI-2 能够产生大量活性氧(ROS)的原因。这项研究从原子尺度理解了空位和刻面对催化剂的协同效应,为治理水环境污染提供了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic modulation of BiOI by atomic-level vacancies and dominant facets for efficient photocatalytic degradation of bisphenol A†

Synergistic modulation of BiOI by atomic-level vacancies and dominant facets for efficient photocatalytic degradation of bisphenol A†

Precise control of desirable facets and vacancies is expected to be a promising strategy for improving the photocatalytic performance of catalysts. Herein, BiOI-1 and BiOI-2 were designed and prepared with (102) and (110) as the dominant exposed facets, respectively. Moreover, BiOI-1 and BiOI-2 correspond to the major types VBiIBi and VBiOBiBi, respectively. The experimental results showed that the degradation and mineralization of bisphenol A (BPA) by BiOI-2 could reach 100% and 95.90% under visible light irradiation. The excellent catalytic performance of BiOI-2 is attributed to the optimization of the energy band structure by its special facets and vacancies, and the narrow band gap promotes the separation of photogenerated electron–hole pairs. Meanwhile, the strong reducing property of the conduction band (CB) and the strong adsorption capacity for water and oxygen contribute to the fact that BiOI-2 can generate a large amount of reactive oxygen species (ROS). This work provides an atomic-scale understanding of the synergistic effects of vacancies and facets on catalysts and offers new directions in the management of water environmental pollution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信