{"title":"NADH 改性氧化锌电子传输层在高性能有机太阳能电池中的应用†.","authors":"Hongye Li, Song Yang and Huangzhong Yu","doi":"10.1039/D4TC03144J","DOIUrl":null,"url":null,"abstract":"<p >As an electron transport layer (ETL) widely used in organic solar cells (OSCs), ZnO has issues with energy level mismatch with the active layer and excessive surface defects, which ultimately reduce the efficiency of OSCs. Here, a ZnO:NADH ETL is prepared by modifying ZnO with green biomaterial nicotinamide adenine dinucleotide (NADH). XPS and UPS show that ZnO obtains electrons from NADH and decreases the work function of ZnO, thus lowering the interface barrier between ZnO and the active layer, which is conducive to electron collection in OSCs. At the same time, the oxygen vacancy density on the ZnO surface reduces after modification with biomaterial NADH, thus improving the electrical conductivity of ZnO. Finally, we use PM6:Y6 and PM6:L8-BO as active layers, and use ZnO:NADH as a novel ETL in OSCs, achieving efficiencies of 16.77% and 18.21%, respectively. The stability of the device with the ZnO:NADH ETL has also been improved to a certain extent. This study provides an effective method for ZnO modification, and also contributes to the environmental protection in the device preparation process.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of a NADH-modified ZnO electron transport layer in high performance organic solar cells†\",\"authors\":\"Hongye Li, Song Yang and Huangzhong Yu\",\"doi\":\"10.1039/D4TC03144J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >As an electron transport layer (ETL) widely used in organic solar cells (OSCs), ZnO has issues with energy level mismatch with the active layer and excessive surface defects, which ultimately reduce the efficiency of OSCs. Here, a ZnO:NADH ETL is prepared by modifying ZnO with green biomaterial nicotinamide adenine dinucleotide (NADH). XPS and UPS show that ZnO obtains electrons from NADH and decreases the work function of ZnO, thus lowering the interface barrier between ZnO and the active layer, which is conducive to electron collection in OSCs. At the same time, the oxygen vacancy density on the ZnO surface reduces after modification with biomaterial NADH, thus improving the electrical conductivity of ZnO. Finally, we use PM6:Y6 and PM6:L8-BO as active layers, and use ZnO:NADH as a novel ETL in OSCs, achieving efficiencies of 16.77% and 18.21%, respectively. The stability of the device with the ZnO:NADH ETL has also been improved to a certain extent. This study provides an effective method for ZnO modification, and also contributes to the environmental protection in the device preparation process.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03144j\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03144j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Application of a NADH-modified ZnO electron transport layer in high performance organic solar cells†
As an electron transport layer (ETL) widely used in organic solar cells (OSCs), ZnO has issues with energy level mismatch with the active layer and excessive surface defects, which ultimately reduce the efficiency of OSCs. Here, a ZnO:NADH ETL is prepared by modifying ZnO with green biomaterial nicotinamide adenine dinucleotide (NADH). XPS and UPS show that ZnO obtains electrons from NADH and decreases the work function of ZnO, thus lowering the interface barrier between ZnO and the active layer, which is conducive to electron collection in OSCs. At the same time, the oxygen vacancy density on the ZnO surface reduces after modification with biomaterial NADH, thus improving the electrical conductivity of ZnO. Finally, we use PM6:Y6 and PM6:L8-BO as active layers, and use ZnO:NADH as a novel ETL in OSCs, achieving efficiencies of 16.77% and 18.21%, respectively. The stability of the device with the ZnO:NADH ETL has also been improved to a certain extent. This study provides an effective method for ZnO modification, and also contributes to the environmental protection in the device preparation process.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.