Caterina Sbandati, Xiongfei Jiang, Deepika Yadav, Spyros Stathopoulos, Dana Cohen, Alex Serb, Shiwei Wang, Themis Prodromakis
{"title":"利用金属氧化物薄膜器件进行神经元多单元活动处理","authors":"Caterina Sbandati, Xiongfei Jiang, Deepika Yadav, Spyros Stathopoulos, Dana Cohen, Alex Serb, Shiwei Wang, Themis Prodromakis","doi":"10.1002/aelm.202400638","DOIUrl":null,"url":null,"abstract":"Intra-cortical brain-machine interfaces (BMIs), able to decode neural activity in real-time, represent a revolutionary opportunity for treating medical conditions. However, traditional systems focusing on single-neuron spike detection require high processing rates and power, hindering the up-scaling for neurons-population monitoring in clinical application. An intriguing proposition is the memristive integrating sensor (MIS) approach, which uses resistive RAM (RRAM) for threshold-based neural activity detection. MIS leverages analogue multi-state switching properties of metal-oxide RRAM to compress neural inputs by encoding above-threshold events in resistance displacement, facilitating efficient data down-sampling in the post-processing, enabling low-power, high-channel systems. Initially tested on spikes and local field potentials, here MIS is adapted to process multi-unit activity envelope (eMUA)—the envelope of entire spiking activity—which has recently been proposed as crucial input for real-time neuro-prosthetic control. Prior necessary modifications to the MIS for effective operation, this adaptation achieved over 95% sensitivity across two types of metal-oxide devices: Pt/TiO<sub><i>x</i></sub>/Pt and TiN/HfO<sub><i>x</i></sub>/TiN, proving its platform-agnostic capabilities. Furthermore, towards the integration of MIS with silicon chips, it is shown that it can reduce total system power consumption to below 1 µW, as RRAM encoding stage relaxes the signal preservation and noise requirements that challenge traditional complementary metal-oxide-semiconductor (CMOS) front-ends. This eMUA-MIS adaptation offers a viable pathway for developing more scalable and efficient BMIs for clinical use.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"146 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuronal Multi Unit Activity Processing with Metal Oxide Memristive Devices\",\"authors\":\"Caterina Sbandati, Xiongfei Jiang, Deepika Yadav, Spyros Stathopoulos, Dana Cohen, Alex Serb, Shiwei Wang, Themis Prodromakis\",\"doi\":\"10.1002/aelm.202400638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intra-cortical brain-machine interfaces (BMIs), able to decode neural activity in real-time, represent a revolutionary opportunity for treating medical conditions. However, traditional systems focusing on single-neuron spike detection require high processing rates and power, hindering the up-scaling for neurons-population monitoring in clinical application. An intriguing proposition is the memristive integrating sensor (MIS) approach, which uses resistive RAM (RRAM) for threshold-based neural activity detection. MIS leverages analogue multi-state switching properties of metal-oxide RRAM to compress neural inputs by encoding above-threshold events in resistance displacement, facilitating efficient data down-sampling in the post-processing, enabling low-power, high-channel systems. Initially tested on spikes and local field potentials, here MIS is adapted to process multi-unit activity envelope (eMUA)—the envelope of entire spiking activity—which has recently been proposed as crucial input for real-time neuro-prosthetic control. Prior necessary modifications to the MIS for effective operation, this adaptation achieved over 95% sensitivity across two types of metal-oxide devices: Pt/TiO<sub><i>x</i></sub>/Pt and TiN/HfO<sub><i>x</i></sub>/TiN, proving its platform-agnostic capabilities. Furthermore, towards the integration of MIS with silicon chips, it is shown that it can reduce total system power consumption to below 1 µW, as RRAM encoding stage relaxes the signal preservation and noise requirements that challenge traditional complementary metal-oxide-semiconductor (CMOS) front-ends. This eMUA-MIS adaptation offers a viable pathway for developing more scalable and efficient BMIs for clinical use.\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"146 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202400638\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400638","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Neuronal Multi Unit Activity Processing with Metal Oxide Memristive Devices
Intra-cortical brain-machine interfaces (BMIs), able to decode neural activity in real-time, represent a revolutionary opportunity for treating medical conditions. However, traditional systems focusing on single-neuron spike detection require high processing rates and power, hindering the up-scaling for neurons-population monitoring in clinical application. An intriguing proposition is the memristive integrating sensor (MIS) approach, which uses resistive RAM (RRAM) for threshold-based neural activity detection. MIS leverages analogue multi-state switching properties of metal-oxide RRAM to compress neural inputs by encoding above-threshold events in resistance displacement, facilitating efficient data down-sampling in the post-processing, enabling low-power, high-channel systems. Initially tested on spikes and local field potentials, here MIS is adapted to process multi-unit activity envelope (eMUA)—the envelope of entire spiking activity—which has recently been proposed as crucial input for real-time neuro-prosthetic control. Prior necessary modifications to the MIS for effective operation, this adaptation achieved over 95% sensitivity across two types of metal-oxide devices: Pt/TiOx/Pt and TiN/HfOx/TiN, proving its platform-agnostic capabilities. Furthermore, towards the integration of MIS with silicon chips, it is shown that it can reduce total system power consumption to below 1 µW, as RRAM encoding stage relaxes the signal preservation and noise requirements that challenge traditional complementary metal-oxide-semiconductor (CMOS) front-ends. This eMUA-MIS adaptation offers a viable pathway for developing more scalable and efficient BMIs for clinical use.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.