{"title":"利用电解膜萃取结合涡流辅助可切换溶剂对水样中的汞(II)进行电化学测定","authors":"Siamak Kiani Shahvandi , Mehrorang Ghaedi , Hamid Ahmar , Pouya Karimi , Hamedreza Javadian","doi":"10.1016/j.jfca.2024.106876","DOIUrl":null,"url":null,"abstract":"<div><div>This research paper presents a novel methodology that integrates electrochemical techniques, specifically electromembrane extraction (EME) and vortex-assisted switchable hydrophilicity solvent-based liquid-phase microextraction (VASHS-LPME). Electrochemical analysis allows for the sensitive detection of Hg(II). The study investigated the impact of vortexing during the switch of the extraction solvent for the first time. Additionally, it explored the potential of vortexing as an alternative to time-consuming temperature control processes, the use of hazardous acids like HCl, and dry ice. The study examined the utilization of potato dextrose agar (PDA) gel as a membrane in EME, eliminating the need for an organic solvent in Hg(II) extraction. We optimized the experimental conditions and found that by meeting specific parameters, we could efficiently extract Hg(II) from a 20 mL solution sample using a PDA gel-based membrane in an aqueous acceptor phase. Subsequently, the VASHS-LPME method was applied under optimal conditions for the extraction of Hg(II) ions. The study demonstrated a linear range of 0.0075–100 μmol L<sup>−1</sup>, with a limit of quantification (LOQ) and limit of detection (LOD) ranging from 0.0075 to 0.0022 μmol L<sup>−1</sup>. The precision values obtained for intra- and inter-day relative standard deviations (RSDs) were 3.8 % and 4.3 %, respectively. The technique proposed in the research was effectively employed to determine the quantity of Hg(II) in food and water samples.</div></div>","PeriodicalId":15867,"journal":{"name":"Journal of Food Composition and Analysis","volume":"137 ","pages":"Article 106876"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical determination of Hg(II) in aqueous samples using electromembrane extraction combined with vortex-assisted switchable solvent\",\"authors\":\"Siamak Kiani Shahvandi , Mehrorang Ghaedi , Hamid Ahmar , Pouya Karimi , Hamedreza Javadian\",\"doi\":\"10.1016/j.jfca.2024.106876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research paper presents a novel methodology that integrates electrochemical techniques, specifically electromembrane extraction (EME) and vortex-assisted switchable hydrophilicity solvent-based liquid-phase microextraction (VASHS-LPME). Electrochemical analysis allows for the sensitive detection of Hg(II). The study investigated the impact of vortexing during the switch of the extraction solvent for the first time. Additionally, it explored the potential of vortexing as an alternative to time-consuming temperature control processes, the use of hazardous acids like HCl, and dry ice. The study examined the utilization of potato dextrose agar (PDA) gel as a membrane in EME, eliminating the need for an organic solvent in Hg(II) extraction. We optimized the experimental conditions and found that by meeting specific parameters, we could efficiently extract Hg(II) from a 20 mL solution sample using a PDA gel-based membrane in an aqueous acceptor phase. Subsequently, the VASHS-LPME method was applied under optimal conditions for the extraction of Hg(II) ions. The study demonstrated a linear range of 0.0075–100 μmol L<sup>−1</sup>, with a limit of quantification (LOQ) and limit of detection (LOD) ranging from 0.0075 to 0.0022 μmol L<sup>−1</sup>. The precision values obtained for intra- and inter-day relative standard deviations (RSDs) were 3.8 % and 4.3 %, respectively. The technique proposed in the research was effectively employed to determine the quantity of Hg(II) in food and water samples.</div></div>\",\"PeriodicalId\":15867,\"journal\":{\"name\":\"Journal of Food Composition and Analysis\",\"volume\":\"137 \",\"pages\":\"Article 106876\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Composition and Analysis\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889157524009104\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Composition and Analysis","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889157524009104","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Electrochemical determination of Hg(II) in aqueous samples using electromembrane extraction combined with vortex-assisted switchable solvent
This research paper presents a novel methodology that integrates electrochemical techniques, specifically electromembrane extraction (EME) and vortex-assisted switchable hydrophilicity solvent-based liquid-phase microextraction (VASHS-LPME). Electrochemical analysis allows for the sensitive detection of Hg(II). The study investigated the impact of vortexing during the switch of the extraction solvent for the first time. Additionally, it explored the potential of vortexing as an alternative to time-consuming temperature control processes, the use of hazardous acids like HCl, and dry ice. The study examined the utilization of potato dextrose agar (PDA) gel as a membrane in EME, eliminating the need for an organic solvent in Hg(II) extraction. We optimized the experimental conditions and found that by meeting specific parameters, we could efficiently extract Hg(II) from a 20 mL solution sample using a PDA gel-based membrane in an aqueous acceptor phase. Subsequently, the VASHS-LPME method was applied under optimal conditions for the extraction of Hg(II) ions. The study demonstrated a linear range of 0.0075–100 μmol L−1, with a limit of quantification (LOQ) and limit of detection (LOD) ranging from 0.0075 to 0.0022 μmol L−1. The precision values obtained for intra- and inter-day relative standard deviations (RSDs) were 3.8 % and 4.3 %, respectively. The technique proposed in the research was effectively employed to determine the quantity of Hg(II) in food and water samples.
期刊介绍:
The Journal of Food Composition and Analysis publishes manuscripts on scientific aspects of data on the chemical composition of human foods, with particular emphasis on actual data on composition of foods; analytical methods; studies on the manipulation, storage, distribution and use of food composition data; and studies on the statistics, use and distribution of such data and data systems. The Journal''s basis is nutrient composition, with increasing emphasis on bioactive non-nutrient and anti-nutrient components. Papers must provide sufficient description of the food samples, analytical methods, quality control procedures and statistical treatments of the data to permit the end users of the food composition data to evaluate the appropriateness of such data in their projects.
The Journal does not publish papers on: microbiological compounds; sensory quality; aromatics/volatiles in food and wine; essential oils; organoleptic characteristics of food; physical properties; or clinical papers and pharmacology-related papers.