四苯基卟啉镓纳米粒子在体外肉芽肿结构模型中抗艾滋病病毒-结核病双重感染的疗效和可能的作用机制

IF 4 2区 医学 Q2 CHEMISTRY, MEDICINAL
ACS Infectious Diseases Pub Date : 2024-12-13 Epub Date: 2024-11-05 DOI:10.1021/acsinfecdis.4c00639
Seoung-Ryoung Choi, Smita Kulkarni, Eusondia Arnett, Larry S Schlesinger, Bradley E Britigan, Prabagaran Narayanasamy
{"title":"四苯基卟啉镓纳米粒子在体外肉芽肿结构模型中抗艾滋病病毒-结核病双重感染的疗效和可能的作用机制","authors":"Seoung-Ryoung Choi, Smita Kulkarni, Eusondia Arnett, Larry S Schlesinger, Bradley E Britigan, Prabagaran Narayanasamy","doi":"10.1021/acsinfecdis.4c00639","DOIUrl":null,"url":null,"abstract":"<p><p>Coinfection of <i>Mycobacterium tuberculosis</i> (Mtb) and human immunodeficiency virus-1 (HIV) is a significant public health concern. Treatment is challenging due to prolonged duration of therapy and drug interactions between antiretroviral therapy (ART) and anti-TB drugs. Noniron gallium <i>meso</i>-tetraphenyl porphyrin (GaTP), a heme mimetic, has shown broad antimicrobial activity. Here, we investigated the efficacy of nanoparticle encapsulating GaTP (GaNP) for the treatment of HIV and Mtb coinfection or single infection in <i>in vitro</i> granuloma structures. GaNP significantly reduced viable Mtb within primary human <i>in vitro</i> granuloma structures infected with Mtb H37Rv-lux and significantly reduced levels of HIV in CD4+ T cells infected with the virus axenically. Similarly, GaNP exhibited significant antimicrobial activity against HIV/Mtb-coinfected granuloma structures created <i>in vitro</i>, which contain the primary immune cells seen in human TB granulomas, including CD4+ T cells and macrophages, as assessed by a luciferase assay for Mtb and p24 ELISA for HIV detection. Furthermore, mechanistic studies revealed that GaTP increases the level of reactive oxygen species and inhibits catalase in Mtb. A significant increase in Mtb nitrate reductase activity was also observed when Mtb was incubated with GaTP and sodium nitrate. Overall, increased oxidative stress and nitrite levels induced by GaTP are consistent with the possibility that GaTP inhibits Mtb aerobic respiration, which leads to incomplete O<sub>2</sub> reduction and a shift to respiration using exogenous NO<sub>3</sub>. These cumulative data continue to support the potential for developing the noniron heme analog GaTP and its nanoparticle GaNP as new therapeutic approaches for the treatment of HIV/Mtb coinfection.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":"4279-4290"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficacy and Possible Mechanism(s) of Action of Gallium Tetraphenylporphyrin Nanoparticles against HIV-TB Coinfection in an <i>In Vitro</i> Granuloma Structure Model.\",\"authors\":\"Seoung-Ryoung Choi, Smita Kulkarni, Eusondia Arnett, Larry S Schlesinger, Bradley E Britigan, Prabagaran Narayanasamy\",\"doi\":\"10.1021/acsinfecdis.4c00639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coinfection of <i>Mycobacterium tuberculosis</i> (Mtb) and human immunodeficiency virus-1 (HIV) is a significant public health concern. Treatment is challenging due to prolonged duration of therapy and drug interactions between antiretroviral therapy (ART) and anti-TB drugs. Noniron gallium <i>meso</i>-tetraphenyl porphyrin (GaTP), a heme mimetic, has shown broad antimicrobial activity. Here, we investigated the efficacy of nanoparticle encapsulating GaTP (GaNP) for the treatment of HIV and Mtb coinfection or single infection in <i>in vitro</i> granuloma structures. GaNP significantly reduced viable Mtb within primary human <i>in vitro</i> granuloma structures infected with Mtb H37Rv-lux and significantly reduced levels of HIV in CD4+ T cells infected with the virus axenically. Similarly, GaNP exhibited significant antimicrobial activity against HIV/Mtb-coinfected granuloma structures created <i>in vitro</i>, which contain the primary immune cells seen in human TB granulomas, including CD4+ T cells and macrophages, as assessed by a luciferase assay for Mtb and p24 ELISA for HIV detection. Furthermore, mechanistic studies revealed that GaTP increases the level of reactive oxygen species and inhibits catalase in Mtb. A significant increase in Mtb nitrate reductase activity was also observed when Mtb was incubated with GaTP and sodium nitrate. Overall, increased oxidative stress and nitrite levels induced by GaTP are consistent with the possibility that GaTP inhibits Mtb aerobic respiration, which leads to incomplete O<sub>2</sub> reduction and a shift to respiration using exogenous NO<sub>3</sub>. These cumulative data continue to support the potential for developing the noniron heme analog GaTP and its nanoparticle GaNP as new therapeutic approaches for the treatment of HIV/Mtb coinfection.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":\" \",\"pages\":\"4279-4290\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acsinfecdis.4c00639\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00639","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

结核分枝杆菌(Mtb)和人类免疫缺陷病毒-1(HIV)合并感染是一个重大的公共卫生问题。由于治疗时间较长以及抗逆转录病毒疗法(ART)和抗结核药物之间的药物相互作用,治疗具有挑战性。非铁镓介四苯基卟啉(GaTP)是一种血红素模拟物,具有广泛的抗菌活性。在此,我们在体外肉芽肿结构中研究了封装 GaTP 的纳米颗粒(GaNP)治疗 HIV 和 Mtb 合并感染或单一感染的疗效。GaNP能明显减少原发性人体外肉芽肿结构中感染Mtb H37Rv-lux的存活Mtb,并能明显降低轴向感染病毒的CD4+ T细胞中的HIV水平。同样,GaNP 对体外形成的艾滋病毒/Mtb 共感染肉芽肿结构也有明显的抗菌活性,这些肉芽肿结构中含有人类结核肉芽肿中的主要免疫细胞,包括 CD4+ T 细胞和巨噬细胞。此外,机理研究显示,GaTP 会增加活性氧的水平并抑制 Mtb 中的过氧化氢酶。当Mtb与GaTP和硝酸钠一起培养时,还观察到Mtb硝酸还原酶活性明显增加。总之,GaTP 诱导的氧化应激和亚硝酸盐水平的增加与 GaTP 抑制 Mtb 有氧呼吸的可能性相一致,从而导致氧气还原不完全,转而利用外源 NO3 进行呼吸。这些累积数据继续支持开发非铁血红素类似物GaTP及其纳米粒子GaNP作为治疗HIV/Mtb合并感染的新疗法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficacy and Possible Mechanism(s) of Action of Gallium Tetraphenylporphyrin Nanoparticles against HIV-TB Coinfection in an In Vitro Granuloma Structure Model.

Coinfection of Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus-1 (HIV) is a significant public health concern. Treatment is challenging due to prolonged duration of therapy and drug interactions between antiretroviral therapy (ART) and anti-TB drugs. Noniron gallium meso-tetraphenyl porphyrin (GaTP), a heme mimetic, has shown broad antimicrobial activity. Here, we investigated the efficacy of nanoparticle encapsulating GaTP (GaNP) for the treatment of HIV and Mtb coinfection or single infection in in vitro granuloma structures. GaNP significantly reduced viable Mtb within primary human in vitro granuloma structures infected with Mtb H37Rv-lux and significantly reduced levels of HIV in CD4+ T cells infected with the virus axenically. Similarly, GaNP exhibited significant antimicrobial activity against HIV/Mtb-coinfected granuloma structures created in vitro, which contain the primary immune cells seen in human TB granulomas, including CD4+ T cells and macrophages, as assessed by a luciferase assay for Mtb and p24 ELISA for HIV detection. Furthermore, mechanistic studies revealed that GaTP increases the level of reactive oxygen species and inhibits catalase in Mtb. A significant increase in Mtb nitrate reductase activity was also observed when Mtb was incubated with GaTP and sodium nitrate. Overall, increased oxidative stress and nitrite levels induced by GaTP are consistent with the possibility that GaTP inhibits Mtb aerobic respiration, which leads to incomplete O2 reduction and a shift to respiration using exogenous NO3. These cumulative data continue to support the potential for developing the noniron heme analog GaTP and its nanoparticle GaNP as new therapeutic approaches for the treatment of HIV/Mtb coinfection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Infectious Diseases
ACS Infectious Diseases CHEMISTRY, MEDICINALINFECTIOUS DISEASES&nb-INFECTIOUS DISEASES
CiteScore
9.70
自引率
3.80%
发文量
213
期刊介绍: ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to: * Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials. * Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets. * Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance. * Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents. * Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota. * Small molecule vaccine adjuvants for infectious disease. * Viral and bacterial biochemistry and molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信