Seoung-Ryoung Choi, Smita Kulkarni, Eusondia Arnett, Larry S Schlesinger, Bradley E Britigan, Prabagaran Narayanasamy
{"title":"四苯基卟啉镓纳米粒子在体外肉芽肿结构模型中抗艾滋病病毒-结核病双重感染的疗效和可能的作用机制","authors":"Seoung-Ryoung Choi, Smita Kulkarni, Eusondia Arnett, Larry S Schlesinger, Bradley E Britigan, Prabagaran Narayanasamy","doi":"10.1021/acsinfecdis.4c00639","DOIUrl":null,"url":null,"abstract":"<p><p>Coinfection of <i>Mycobacterium tuberculosis</i> (Mtb) and human immunodeficiency virus-1 (HIV) is a significant public health concern. Treatment is challenging due to prolonged duration of therapy and drug interactions between antiretroviral therapy (ART) and anti-TB drugs. Noniron gallium <i>meso</i>-tetraphenyl porphyrin (GaTP), a heme mimetic, has shown broad antimicrobial activity. Here, we investigated the efficacy of nanoparticle encapsulating GaTP (GaNP) for the treatment of HIV and Mtb coinfection or single infection in <i>in vitro</i> granuloma structures. GaNP significantly reduced viable Mtb within primary human <i>in vitro</i> granuloma structures infected with Mtb H37Rv-lux and significantly reduced levels of HIV in CD4+ T cells infected with the virus axenically. Similarly, GaNP exhibited significant antimicrobial activity against HIV/Mtb-coinfected granuloma structures created <i>in vitro</i>, which contain the primary immune cells seen in human TB granulomas, including CD4+ T cells and macrophages, as assessed by a luciferase assay for Mtb and p24 ELISA for HIV detection. Furthermore, mechanistic studies revealed that GaTP increases the level of reactive oxygen species and inhibits catalase in Mtb. A significant increase in Mtb nitrate reductase activity was also observed when Mtb was incubated with GaTP and sodium nitrate. Overall, increased oxidative stress and nitrite levels induced by GaTP are consistent with the possibility that GaTP inhibits Mtb aerobic respiration, which leads to incomplete O<sub>2</sub> reduction and a shift to respiration using exogenous NO<sub>3</sub>. These cumulative data continue to support the potential for developing the noniron heme analog GaTP and its nanoparticle GaNP as new therapeutic approaches for the treatment of HIV/Mtb coinfection.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":"4279-4290"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficacy and Possible Mechanism(s) of Action of Gallium Tetraphenylporphyrin Nanoparticles against HIV-TB Coinfection in an <i>In Vitro</i> Granuloma Structure Model.\",\"authors\":\"Seoung-Ryoung Choi, Smita Kulkarni, Eusondia Arnett, Larry S Schlesinger, Bradley E Britigan, Prabagaran Narayanasamy\",\"doi\":\"10.1021/acsinfecdis.4c00639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coinfection of <i>Mycobacterium tuberculosis</i> (Mtb) and human immunodeficiency virus-1 (HIV) is a significant public health concern. Treatment is challenging due to prolonged duration of therapy and drug interactions between antiretroviral therapy (ART) and anti-TB drugs. Noniron gallium <i>meso</i>-tetraphenyl porphyrin (GaTP), a heme mimetic, has shown broad antimicrobial activity. Here, we investigated the efficacy of nanoparticle encapsulating GaTP (GaNP) for the treatment of HIV and Mtb coinfection or single infection in <i>in vitro</i> granuloma structures. GaNP significantly reduced viable Mtb within primary human <i>in vitro</i> granuloma structures infected with Mtb H37Rv-lux and significantly reduced levels of HIV in CD4+ T cells infected with the virus axenically. Similarly, GaNP exhibited significant antimicrobial activity against HIV/Mtb-coinfected granuloma structures created <i>in vitro</i>, which contain the primary immune cells seen in human TB granulomas, including CD4+ T cells and macrophages, as assessed by a luciferase assay for Mtb and p24 ELISA for HIV detection. Furthermore, mechanistic studies revealed that GaTP increases the level of reactive oxygen species and inhibits catalase in Mtb. A significant increase in Mtb nitrate reductase activity was also observed when Mtb was incubated with GaTP and sodium nitrate. Overall, increased oxidative stress and nitrite levels induced by GaTP are consistent with the possibility that GaTP inhibits Mtb aerobic respiration, which leads to incomplete O<sub>2</sub> reduction and a shift to respiration using exogenous NO<sub>3</sub>. These cumulative data continue to support the potential for developing the noniron heme analog GaTP and its nanoparticle GaNP as new therapeutic approaches for the treatment of HIV/Mtb coinfection.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":\" \",\"pages\":\"4279-4290\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acsinfecdis.4c00639\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00639","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Efficacy and Possible Mechanism(s) of Action of Gallium Tetraphenylporphyrin Nanoparticles against HIV-TB Coinfection in an In Vitro Granuloma Structure Model.
Coinfection of Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus-1 (HIV) is a significant public health concern. Treatment is challenging due to prolonged duration of therapy and drug interactions between antiretroviral therapy (ART) and anti-TB drugs. Noniron gallium meso-tetraphenyl porphyrin (GaTP), a heme mimetic, has shown broad antimicrobial activity. Here, we investigated the efficacy of nanoparticle encapsulating GaTP (GaNP) for the treatment of HIV and Mtb coinfection or single infection in in vitro granuloma structures. GaNP significantly reduced viable Mtb within primary human in vitro granuloma structures infected with Mtb H37Rv-lux and significantly reduced levels of HIV in CD4+ T cells infected with the virus axenically. Similarly, GaNP exhibited significant antimicrobial activity against HIV/Mtb-coinfected granuloma structures created in vitro, which contain the primary immune cells seen in human TB granulomas, including CD4+ T cells and macrophages, as assessed by a luciferase assay for Mtb and p24 ELISA for HIV detection. Furthermore, mechanistic studies revealed that GaTP increases the level of reactive oxygen species and inhibits catalase in Mtb. A significant increase in Mtb nitrate reductase activity was also observed when Mtb was incubated with GaTP and sodium nitrate. Overall, increased oxidative stress and nitrite levels induced by GaTP are consistent with the possibility that GaTP inhibits Mtb aerobic respiration, which leads to incomplete O2 reduction and a shift to respiration using exogenous NO3. These cumulative data continue to support the potential for developing the noniron heme analog GaTP and its nanoparticle GaNP as new therapeutic approaches for the treatment of HIV/Mtb coinfection.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.