关于阶数为 5 的痕零双随机矩阵

IF 1 3区 数学 Q1 MATHEMATICS
Amrita Mandal , Bibhas Adhikari
{"title":"关于阶数为 5 的痕零双随机矩阵","authors":"Amrita Mandal ,&nbsp;Bibhas Adhikari","doi":"10.1016/j.laa.2024.10.020","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a graph theoretic approach to determine the trace of the product of two permutation matrices through a weighted digraph representation for a pair of permutation matrices. Consequently, we derive trace-zero doubly stochastic (DS) matrices of order 5 whose <em>k</em>-th power is also a trace-zero DS matrix for <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>}</mo></math></span>. Then, we determine necessary conditions for the coefficients of a generic polynomial of degree 5 to be realizable as the characteristic polynomial of a trace-zero DS matrix of order 5. Finally, we approximate the eigenvalue region of trace-zero DS matrices of order 5.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"704 ","pages":"Pages 340-360"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the trace-zero doubly stochastic matrices of order 5\",\"authors\":\"Amrita Mandal ,&nbsp;Bibhas Adhikari\",\"doi\":\"10.1016/j.laa.2024.10.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a graph theoretic approach to determine the trace of the product of two permutation matrices through a weighted digraph representation for a pair of permutation matrices. Consequently, we derive trace-zero doubly stochastic (DS) matrices of order 5 whose <em>k</em>-th power is also a trace-zero DS matrix for <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>}</mo></math></span>. Then, we determine necessary conditions for the coefficients of a generic polynomial of degree 5 to be realizable as the characteristic polynomial of a trace-zero DS matrix of order 5. Finally, we approximate the eigenvalue region of trace-zero DS matrices of order 5.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"704 \",\"pages\":\"Pages 340-360\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003999\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003999","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种图论方法,通过一对置换矩阵的加权数图表示来确定两个置换矩阵乘积的迹。因此,我们推导出了阶数为 5 的迹零双重随机(DS)矩阵,其 k 次幂也是 k∈{2,3,4,5} 的迹零 DS 矩阵。然后,我们确定了一般 5 阶多项式系数可变为 5 阶微量为零 DS 矩阵特征多项式的必要条件。最后,我们逼近了阶为 5 的痕零 DS 矩阵的特征值区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the trace-zero doubly stochastic matrices of order 5
We propose a graph theoretic approach to determine the trace of the product of two permutation matrices through a weighted digraph representation for a pair of permutation matrices. Consequently, we derive trace-zero doubly stochastic (DS) matrices of order 5 whose k-th power is also a trace-zero DS matrix for k{2,3,4,5}. Then, we determine necessary conditions for the coefficients of a generic polynomial of degree 5 to be realizable as the characteristic polynomial of a trace-zero DS matrix of order 5. Finally, we approximate the eigenvalue region of trace-zero DS matrices of order 5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信