{"title":"用于评估在柔性条件下运行的蒸汽轮机转子可靠性的损伤驱动框架","authors":"","doi":"10.1016/j.ress.2024.110578","DOIUrl":null,"url":null,"abstract":"<div><div>The high-temperature rotating structures (HTRS), e.g., steam turbine rotors, often operate in extremely harsh environments with a flexible load condition during peak shaving of power system. In this work, a damage-driven framework for reliability assessment is developed in terms of the cumulative damage-damage threshold interference (CD-DT) principle, in which the cumulative damage and damage threshold are regarded as two random parameters to address uncertainties. The CD-DT principle is founded on the engineering damage theory and incorporates physics-of-failure into the probabilistic modeling of high-temperature structural reliability. Probabilistic damage analysis, correlation analysis of weak sites, system-level reliability analysis, and sensitivity analysis have been encompassed in this framework. Three numerical examples are used to verify the effectiveness and applicability of the proposed framework. Application to steam turbine rotor involving multiple weak sites with multi-damage modes illustrate the implementation procedures of the framework. Results show that the reliability-based design life of rotor decreases with the increases of start-stop frequency, the implementation of a two-shift operation would pose a threat to meeting the safety requirement of a 30-year design life. Furthermore, sensitivity analysis highlights the critical influences of initial rotor temperature and speed rising rate on rotor reliability, providing insights for operational maintenance and reliability optimization.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damage-driven framework for reliability assessment of steam turbine rotors operating under flexible conditions\",\"authors\":\"\",\"doi\":\"10.1016/j.ress.2024.110578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The high-temperature rotating structures (HTRS), e.g., steam turbine rotors, often operate in extremely harsh environments with a flexible load condition during peak shaving of power system. In this work, a damage-driven framework for reliability assessment is developed in terms of the cumulative damage-damage threshold interference (CD-DT) principle, in which the cumulative damage and damage threshold are regarded as two random parameters to address uncertainties. The CD-DT principle is founded on the engineering damage theory and incorporates physics-of-failure into the probabilistic modeling of high-temperature structural reliability. Probabilistic damage analysis, correlation analysis of weak sites, system-level reliability analysis, and sensitivity analysis have been encompassed in this framework. Three numerical examples are used to verify the effectiveness and applicability of the proposed framework. Application to steam turbine rotor involving multiple weak sites with multi-damage modes illustrate the implementation procedures of the framework. Results show that the reliability-based design life of rotor decreases with the increases of start-stop frequency, the implementation of a two-shift operation would pose a threat to meeting the safety requirement of a 30-year design life. Furthermore, sensitivity analysis highlights the critical influences of initial rotor temperature and speed rising rate on rotor reliability, providing insights for operational maintenance and reliability optimization.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832024006495\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024006495","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Damage-driven framework for reliability assessment of steam turbine rotors operating under flexible conditions
The high-temperature rotating structures (HTRS), e.g., steam turbine rotors, often operate in extremely harsh environments with a flexible load condition during peak shaving of power system. In this work, a damage-driven framework for reliability assessment is developed in terms of the cumulative damage-damage threshold interference (CD-DT) principle, in which the cumulative damage and damage threshold are regarded as two random parameters to address uncertainties. The CD-DT principle is founded on the engineering damage theory and incorporates physics-of-failure into the probabilistic modeling of high-temperature structural reliability. Probabilistic damage analysis, correlation analysis of weak sites, system-level reliability analysis, and sensitivity analysis have been encompassed in this framework. Three numerical examples are used to verify the effectiveness and applicability of the proposed framework. Application to steam turbine rotor involving multiple weak sites with multi-damage modes illustrate the implementation procedures of the framework. Results show that the reliability-based design life of rotor decreases with the increases of start-stop frequency, the implementation of a two-shift operation would pose a threat to meeting the safety requirement of a 30-year design life. Furthermore, sensitivity analysis highlights the critical influences of initial rotor temperature and speed rising rate on rotor reliability, providing insights for operational maintenance and reliability optimization.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.