基于脑电图的驾驶疲劳实时检测,采用新型半干电极,可自我补充导电液。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Fuwang Wang, Anni Luo, Daping Chen
{"title":"基于脑电图的驾驶疲劳实时检测,采用新型半干电极,可自我补充导电液。","authors":"Fuwang Wang, Anni Luo, Daping Chen","doi":"10.1080/10255842.2024.2423268","DOIUrl":null,"url":null,"abstract":"<p><p>A novel semi-dry electrode that can realize self-replenishment of conductive liquid is proposed in this study. Driving fatigue is detected by extracting the refined composite multiscale fluctuation dispersion entropy (RCMFDE) features in electroencephalogram (EEG) signals collected by this electrode. The results show that the new semi-dry electrode can automatically complete the conductive fluid supplement according to its own humidity conditions, which not only notably improves the effective working time, but also significantly reduces the skin impedance. By comparing with the classical entropy algorithms, the computational speed and the stability of the RCMFDE method are Substantially enhanced.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time EEG-based detection of driving fatigue using a novel semi-dry electrode with self-replenishment of conductive fluid.\",\"authors\":\"Fuwang Wang, Anni Luo, Daping Chen\",\"doi\":\"10.1080/10255842.2024.2423268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel semi-dry electrode that can realize self-replenishment of conductive liquid is proposed in this study. Driving fatigue is detected by extracting the refined composite multiscale fluctuation dispersion entropy (RCMFDE) features in electroencephalogram (EEG) signals collected by this electrode. The results show that the new semi-dry electrode can automatically complete the conductive fluid supplement according to its own humidity conditions, which not only notably improves the effective working time, but also significantly reduces the skin impedance. By comparing with the classical entropy algorithms, the computational speed and the stability of the RCMFDE method are Substantially enhanced.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2024.2423268\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2423268","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种可实现导电液体自我补充的新型半干电极。通过提取该电极采集的脑电图(EEG)信号中的精炼复合多尺度波动离散熵(RCMFDE)特征来检测驾驶疲劳。结果表明,新型半干电极可根据自身湿度条件自动完成导电液的补充,不仅显著提高了有效工作时间,还大大降低了皮肤阻抗。与经典的熵算法相比,RCMFDE 方法的计算速度和稳定性都得到了大幅提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time EEG-based detection of driving fatigue using a novel semi-dry electrode with self-replenishment of conductive fluid.

A novel semi-dry electrode that can realize self-replenishment of conductive liquid is proposed in this study. Driving fatigue is detected by extracting the refined composite multiscale fluctuation dispersion entropy (RCMFDE) features in electroencephalogram (EEG) signals collected by this electrode. The results show that the new semi-dry electrode can automatically complete the conductive fluid supplement according to its own humidity conditions, which not only notably improves the effective working time, but also significantly reduces the skin impedance. By comparing with the classical entropy algorithms, the computational speed and the stability of the RCMFDE method are Substantially enhanced.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信