不同精神疾病的灰质体积差异图谱:系统综述与考虑并发症的新型荟萃分析。

IF 9.6 1区 医学 Q1 NEUROSCIENCES
Lydia Fortea, Maria Ortuño, Michele De Prisco, Vincenzo Oliva, Anton Albajes-Eizagirre, Adriana Fortea, Santiago Madero, Aleix Solanes, Enric Vilajosana, Yuanwei Yao, Lorenzo Del Fabro, Eduard Solé, Norma Verdolini, Alvar Farré-Colomés, Maria Serra-Blasco, Maria Picó-Pérez, Steve Lukito, Toby Wise, Christina Carlisi, Danilo Arnone, Matthew J Kempton, Alexander Omar Hauson, Scott Wollman, Carles Soriano-Mas, Katya Rubia, Luke Norman, Paolo Fusar-Poli, David Mataix-Cols, Marc Valentí, Esther Via, Narcis Cardoner, Marco Solmi, Jintao Zhang, Pinglei Pan, Jae Il Shin, Miquel A Fullana, Eduard Vieta, Joaquim Radua
{"title":"不同精神疾病的灰质体积差异图谱:系统综述与考虑并发症的新型荟萃分析。","authors":"Lydia Fortea, Maria Ortuño, Michele De Prisco, Vincenzo Oliva, Anton Albajes-Eizagirre, Adriana Fortea, Santiago Madero, Aleix Solanes, Enric Vilajosana, Yuanwei Yao, Lorenzo Del Fabro, Eduard Solé, Norma Verdolini, Alvar Farré-Colomés, Maria Serra-Blasco, Maria Picó-Pérez, Steve Lukito, Toby Wise, Christina Carlisi, Danilo Arnone, Matthew J Kempton, Alexander Omar Hauson, Scott Wollman, Carles Soriano-Mas, Katya Rubia, Luke Norman, Paolo Fusar-Poli, David Mataix-Cols, Marc Valentí, Esther Via, Narcis Cardoner, Marco Solmi, Jintao Zhang, Pinglei Pan, Jae Il Shin, Miquel A Fullana, Eduard Vieta, Joaquim Radua","doi":"10.1016/j.biopsych.2024.10.020","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Regional gray matter volume (GMV) differences between individuals with mental disorders and comparison participants may be confounded by co-occurring disorders. To disentangle disorder-specific GMV correlates, we conducted a large-scale multidisorder meta-analysis using a novel approach that explicitly models co-occurring disorders.</p><p><strong>Methods: </strong>We systematically reviewed voxel-based morphometry studies indexed in PubMed and Scopus up to January 2023 that compared adults with major mental disorders (anorexia nervosa, schizophrenia spectrum, anxiety, bipolar, major depressive, obsessive-compulsive, and posttraumatic stress disorders plus attention-deficit/hyperactivity, autism spectrum, and borderline personality disorders) with comparison participants. Two authors independently extracted data and assessed quality using the Newcastle-Ottawa Scale. We derived GMV correlates for each disorder using: 1) a multidisorder meta-analysis that accounted for all co-occurring mental disorders simultaneously and 2) separate standard meta-analyses for each disorder in which co-occurring disorders were ignored. We assessed the alterations' extent, intensity (effect size), and specificity (interdisorder correlations and transdiagnostic alterations) for both approaches.</p><p><strong>Results: </strong>We included 433 studies (499 datasets) involving 19,718 patients and 16,441 comparison participants (51% female, ages 20-67 years). We provide GMV correlate maps for each disorder using both approaches. The novel approach, which accounted for co-occurring disorders, produced GMV correlates that were more focal and disorder specific (less correlated across disorders and fewer transdiagnostic abnormalities).</p><p><strong>Conclusions: </strong>This work offers the most comprehensive atlas of GMV correlates across major mental disorders. Modeling co-occurring disorders yielded more specific correlates, supporting this approach's validity. The atlas NIfTI maps are available online.</p>","PeriodicalId":8918,"journal":{"name":"Biological Psychiatry","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atlas of Gray Matter Volume Differences Across Psychiatric Conditions: A Systematic Review With a Novel Meta-Analysis That Considers Co-Occurring Disorders.\",\"authors\":\"Lydia Fortea, Maria Ortuño, Michele De Prisco, Vincenzo Oliva, Anton Albajes-Eizagirre, Adriana Fortea, Santiago Madero, Aleix Solanes, Enric Vilajosana, Yuanwei Yao, Lorenzo Del Fabro, Eduard Solé, Norma Verdolini, Alvar Farré-Colomés, Maria Serra-Blasco, Maria Picó-Pérez, Steve Lukito, Toby Wise, Christina Carlisi, Danilo Arnone, Matthew J Kempton, Alexander Omar Hauson, Scott Wollman, Carles Soriano-Mas, Katya Rubia, Luke Norman, Paolo Fusar-Poli, David Mataix-Cols, Marc Valentí, Esther Via, Narcis Cardoner, Marco Solmi, Jintao Zhang, Pinglei Pan, Jae Il Shin, Miquel A Fullana, Eduard Vieta, Joaquim Radua\",\"doi\":\"10.1016/j.biopsych.2024.10.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Regional gray matter volume (GMV) differences between individuals with mental disorders and comparison participants may be confounded by co-occurring disorders. To disentangle disorder-specific GMV correlates, we conducted a large-scale multidisorder meta-analysis using a novel approach that explicitly models co-occurring disorders.</p><p><strong>Methods: </strong>We systematically reviewed voxel-based morphometry studies indexed in PubMed and Scopus up to January 2023 that compared adults with major mental disorders (anorexia nervosa, schizophrenia spectrum, anxiety, bipolar, major depressive, obsessive-compulsive, and posttraumatic stress disorders plus attention-deficit/hyperactivity, autism spectrum, and borderline personality disorders) with comparison participants. Two authors independently extracted data and assessed quality using the Newcastle-Ottawa Scale. We derived GMV correlates for each disorder using: 1) a multidisorder meta-analysis that accounted for all co-occurring mental disorders simultaneously and 2) separate standard meta-analyses for each disorder in which co-occurring disorders were ignored. We assessed the alterations' extent, intensity (effect size), and specificity (interdisorder correlations and transdiagnostic alterations) for both approaches.</p><p><strong>Results: </strong>We included 433 studies (499 datasets) involving 19,718 patients and 16,441 comparison participants (51% female, ages 20-67 years). We provide GMV correlate maps for each disorder using both approaches. The novel approach, which accounted for co-occurring disorders, produced GMV correlates that were more focal and disorder specific (less correlated across disorders and fewer transdiagnostic abnormalities).</p><p><strong>Conclusions: </strong>This work offers the most comprehensive atlas of GMV correlates across major mental disorders. Modeling co-occurring disorders yielded more specific correlates, supporting this approach's validity. The atlas NIfTI maps are available online.</p>\",\"PeriodicalId\":8918,\"journal\":{\"name\":\"Biological Psychiatry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biopsych.2024.10.020\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.biopsych.2024.10.020","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:精神障碍患者与对比受试者之间的区域灰质体积(GMV)差异可能会受到共存障碍的干扰。为了厘清疾病特异性灰质体积的相关性,我们采用一种明确模拟共存疾病的新方法进行了大规模多疾病荟萃分析:我们系统地回顾了截至 2023 年 1 月在 PubMed 和 Scopus 上收录的基于体素的形态计量学研究,这些研究将患有主要精神障碍(神经性厌食症、精神分裂症谱、焦虑症、双相情感障碍、重度抑郁症、强迫症和创伤后应激障碍,以及注意力缺陷/多动障碍、自闭症谱系障碍和边缘型人格障碍)的成人与对比受试者进行了比较。两位作者独立提取数据,并使用纽卡斯尔-渥太华量表评估数据质量。我们通过以下方法得出了每种障碍的 GMV 相关性:a)同时考虑所有共患精神障碍的多障碍荟萃分析;b)针对每种障碍忽略共患障碍的单独标准荟萃分析。我们对这两种方法的改变程度、强度(效应大小)和特异性(疾病间相关性和跨诊断改变)进行了评估:我们纳入了 433 项研究(499 个数据集),涉及 19,718 名患者和 16,441 名对比受试者(51% 为女性,年龄在 20-67 岁之间)。我们利用这两种方法提供了每种疾病的 GMV 关联图。新方法考虑了共存障碍,产生的 GMV 相关图更具有局灶性和障碍特异性(跨障碍的相关性较低,跨诊断的异常较少):这项研究提供了最全面的主要精神障碍 GMV 相关性图谱。对共存障碍进行建模可得出更具体的相关性,从而支持了这一方法的有效性。图谱中的 NIfTI 地图可在线获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atlas of Gray Matter Volume Differences Across Psychiatric Conditions: A Systematic Review With a Novel Meta-Analysis That Considers Co-Occurring Disorders.

Background: Regional gray matter volume (GMV) differences between individuals with mental disorders and comparison participants may be confounded by co-occurring disorders. To disentangle disorder-specific GMV correlates, we conducted a large-scale multidisorder meta-analysis using a novel approach that explicitly models co-occurring disorders.

Methods: We systematically reviewed voxel-based morphometry studies indexed in PubMed and Scopus up to January 2023 that compared adults with major mental disorders (anorexia nervosa, schizophrenia spectrum, anxiety, bipolar, major depressive, obsessive-compulsive, and posttraumatic stress disorders plus attention-deficit/hyperactivity, autism spectrum, and borderline personality disorders) with comparison participants. Two authors independently extracted data and assessed quality using the Newcastle-Ottawa Scale. We derived GMV correlates for each disorder using: 1) a multidisorder meta-analysis that accounted for all co-occurring mental disorders simultaneously and 2) separate standard meta-analyses for each disorder in which co-occurring disorders were ignored. We assessed the alterations' extent, intensity (effect size), and specificity (interdisorder correlations and transdiagnostic alterations) for both approaches.

Results: We included 433 studies (499 datasets) involving 19,718 patients and 16,441 comparison participants (51% female, ages 20-67 years). We provide GMV correlate maps for each disorder using both approaches. The novel approach, which accounted for co-occurring disorders, produced GMV correlates that were more focal and disorder specific (less correlated across disorders and fewer transdiagnostic abnormalities).

Conclusions: This work offers the most comprehensive atlas of GMV correlates across major mental disorders. Modeling co-occurring disorders yielded more specific correlates, supporting this approach's validity. The atlas NIfTI maps are available online.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Psychiatry
Biological Psychiatry 医学-精神病学
CiteScore
18.80
自引率
2.80%
发文量
1398
审稿时长
33 days
期刊介绍: Biological Psychiatry is an official journal of the Society of Biological Psychiatry and was established in 1969. It is the first journal in the Biological Psychiatry family, which also includes Biological Psychiatry: Cognitive Neuroscience and Neuroimaging and Biological Psychiatry: Global Open Science. The Society's main goal is to promote excellence in scientific research and education in the fields related to the nature, causes, mechanisms, and treatments of disorders pertaining to thought, emotion, and behavior. To fulfill this mission, Biological Psychiatry publishes peer-reviewed, rapid-publication articles that present new findings from original basic, translational, and clinical mechanistic research, ultimately advancing our understanding of psychiatric disorders and their treatment. The journal also encourages the submission of reviews and commentaries on current research and topics of interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信