{"title":"利用高分辨率熔解曲线测定法检测和区分鸡腺病毒血清型 4 和鸭腺病毒 3。","authors":"Shuyu Chen , Cuiteng Chen , Mengyan Zhang , YuYi Chen , Wenyu Zhang , Huanru Fu , Yu Huang , Longfei Cheng , Chunhe Wan","doi":"10.1016/j.psj.2024.104426","DOIUrl":null,"url":null,"abstract":"<div><div>Fowl adenovirus type 4 (FAdV-4) and duck adenovirus type 3 (DAdV-3) are the causative agents of clinical diseases in poultry and have caused considerable economic losses to the waterfowl industry in China. Both FAdV-4 and DAdV-3 are classified into the genus <em>Aviadenovirus</em> under the family <em>Adenoviridae</em>. The high-resolution melting (HRM) assay has become a useful method for virus genotyping, which offers the possibility of rapidly developing a differentiation technique in which the melting profile depends on the GC content of the product in the qPCR platform. The aim of this study was to develop a qPCR-HRM assay for sensitive FAdV-4 and DAdV-3 detection and differentiation. Here, specific primers were designed on the basis of the 100 K genes of FAdV-4 and DAdV-3, and a qPCR-HRM assay was established through optimization of the reaction conditions. A specificity test revealed that this method could detect only FAdV-4 and DAdV-3, with no cross-reaction with other common duck-derived viruses. A sensitivity test revealed that the lowest detection limits of FAdV-4 and DAdV-3 were 2.84 copies/µL and 2.85 copies/µL, respectively. A repeatability test demonstrated that the coefficient of variation was less than 2.5 % in both the intragroup and the intergroup analyses. Field sample distributions of FAdV-4 and DAdV-3 were investigated, and the percentages of DAdV-3-positive, FAdV-4-positive and coinfection-positive in Muscovy ducks were 27.78 %, 16.67 % and 11.11 %, respectively. Further studies are needed to provide more insight into the pathogenesis of FAdV-4 and DAdV-3 coinfection in ducks. In conclusion, the qPCR-HRM assay provides an accurate, sensitive, reliable and cost-effective alternative method for detecting and distinguishing FAdV-4 and DAdV-3.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"103 12","pages":"Article 104426"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection and differentiation of fowl adenovirus serotype 4 and duck adenovirus 3 using high resolution melting curve assay\",\"authors\":\"Shuyu Chen , Cuiteng Chen , Mengyan Zhang , YuYi Chen , Wenyu Zhang , Huanru Fu , Yu Huang , Longfei Cheng , Chunhe Wan\",\"doi\":\"10.1016/j.psj.2024.104426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fowl adenovirus type 4 (FAdV-4) and duck adenovirus type 3 (DAdV-3) are the causative agents of clinical diseases in poultry and have caused considerable economic losses to the waterfowl industry in China. Both FAdV-4 and DAdV-3 are classified into the genus <em>Aviadenovirus</em> under the family <em>Adenoviridae</em>. The high-resolution melting (HRM) assay has become a useful method for virus genotyping, which offers the possibility of rapidly developing a differentiation technique in which the melting profile depends on the GC content of the product in the qPCR platform. The aim of this study was to develop a qPCR-HRM assay for sensitive FAdV-4 and DAdV-3 detection and differentiation. Here, specific primers were designed on the basis of the 100 K genes of FAdV-4 and DAdV-3, and a qPCR-HRM assay was established through optimization of the reaction conditions. A specificity test revealed that this method could detect only FAdV-4 and DAdV-3, with no cross-reaction with other common duck-derived viruses. A sensitivity test revealed that the lowest detection limits of FAdV-4 and DAdV-3 were 2.84 copies/µL and 2.85 copies/µL, respectively. A repeatability test demonstrated that the coefficient of variation was less than 2.5 % in both the intragroup and the intergroup analyses. Field sample distributions of FAdV-4 and DAdV-3 were investigated, and the percentages of DAdV-3-positive, FAdV-4-positive and coinfection-positive in Muscovy ducks were 27.78 %, 16.67 % and 11.11 %, respectively. Further studies are needed to provide more insight into the pathogenesis of FAdV-4 and DAdV-3 coinfection in ducks. In conclusion, the qPCR-HRM assay provides an accurate, sensitive, reliable and cost-effective alternative method for detecting and distinguishing FAdV-4 and DAdV-3.</div></div>\",\"PeriodicalId\":20459,\"journal\":{\"name\":\"Poultry Science\",\"volume\":\"103 12\",\"pages\":\"Article 104426\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Poultry Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032579124010046\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032579124010046","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Detection and differentiation of fowl adenovirus serotype 4 and duck adenovirus 3 using high resolution melting curve assay
Fowl adenovirus type 4 (FAdV-4) and duck adenovirus type 3 (DAdV-3) are the causative agents of clinical diseases in poultry and have caused considerable economic losses to the waterfowl industry in China. Both FAdV-4 and DAdV-3 are classified into the genus Aviadenovirus under the family Adenoviridae. The high-resolution melting (HRM) assay has become a useful method for virus genotyping, which offers the possibility of rapidly developing a differentiation technique in which the melting profile depends on the GC content of the product in the qPCR platform. The aim of this study was to develop a qPCR-HRM assay for sensitive FAdV-4 and DAdV-3 detection and differentiation. Here, specific primers were designed on the basis of the 100 K genes of FAdV-4 and DAdV-3, and a qPCR-HRM assay was established through optimization of the reaction conditions. A specificity test revealed that this method could detect only FAdV-4 and DAdV-3, with no cross-reaction with other common duck-derived viruses. A sensitivity test revealed that the lowest detection limits of FAdV-4 and DAdV-3 were 2.84 copies/µL and 2.85 copies/µL, respectively. A repeatability test demonstrated that the coefficient of variation was less than 2.5 % in both the intragroup and the intergroup analyses. Field sample distributions of FAdV-4 and DAdV-3 were investigated, and the percentages of DAdV-3-positive, FAdV-4-positive and coinfection-positive in Muscovy ducks were 27.78 %, 16.67 % and 11.11 %, respectively. Further studies are needed to provide more insight into the pathogenesis of FAdV-4 and DAdV-3 coinfection in ducks. In conclusion, the qPCR-HRM assay provides an accurate, sensitive, reliable and cost-effective alternative method for detecting and distinguishing FAdV-4 and DAdV-3.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.