Jiahao Guo, Ting Ji, Yang Yang, Linlin Shi, Wenyan Wang, Yao Ma, Liang Shen, Guohui Li and Yanxia Cui
{"title":"原子层定制有机光电探测器:利用分子间电荷转移吸收将光谱灵敏度扩展至电信波段†。","authors":"Jiahao Guo, Ting Ji, Yang Yang, Linlin Shi, Wenyan Wang, Yao Ma, Liang Shen, Guohui Li and Yanxia Cui","doi":"10.1039/D4TC02619E","DOIUrl":null,"url":null,"abstract":"<p >The intermolecular charge transfer (CT) states within organic donor–acceptor blends are essential for absorbing photon energy below the bandgaps of separate donor and acceptor materials, which could significantly broaden the response spectrum of organic photodetectors (OPDs). However, CT absorption's inefficiency in the near-infrared (NIR) spectrum limits photocurrent generation, restricting detectable wavelengths. Herein, by incorporating an atomic-thick interfacial layer, we have effectively minimized the dark current of ZnPc:C<small><sub>60</sub></small> OPD, enabling the device to sense light with wavelengths extending up to the telecommunication band of 1550 nm. Raman spectroscopy analysis reveals that engineering the interfacial layer, particularly in terms of material type and layer thickness, is crucial for fully blocking the detrimental chemical reaction between ITO and ZnPc while simultaneously maximizing the photocurrent performance. Responsivity and detectivity of the optimized device can reach 45 mA W<small><sup>−1</sup></small> and 3.2 × 10<small><sup>11</sup></small> jones, respectively, under illumination of an 850 nm light source, which are comparable to those of other CT-based OPDs. In addition, the proposed device exhibits a swift response speed of 39 ns, and the response speed at CT absorption wavelengths surpasses that at short-wavelengths attributed to intrinsic absorption. The delayed response speed at short-wavelengths stems from the exciton diffusion process as well as the electron transfer process, and electron transfer process between ZnPc and C<small><sub>60</sub></small> was confirmed through transient absorption spectroscopy. This work not only overcomes the traditional limitations of CT absorption in the NIR regions but also opens new horizons for high-speed OPDs in various applications.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 42","pages":" 17056-17067"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic-layer tailored organic photodetectors: harnessing intermolecular charge-transfer absorption for expanded spectral sensitivity up to the telecommunication band†\",\"authors\":\"Jiahao Guo, Ting Ji, Yang Yang, Linlin Shi, Wenyan Wang, Yao Ma, Liang Shen, Guohui Li and Yanxia Cui\",\"doi\":\"10.1039/D4TC02619E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The intermolecular charge transfer (CT) states within organic donor–acceptor blends are essential for absorbing photon energy below the bandgaps of separate donor and acceptor materials, which could significantly broaden the response spectrum of organic photodetectors (OPDs). However, CT absorption's inefficiency in the near-infrared (NIR) spectrum limits photocurrent generation, restricting detectable wavelengths. Herein, by incorporating an atomic-thick interfacial layer, we have effectively minimized the dark current of ZnPc:C<small><sub>60</sub></small> OPD, enabling the device to sense light with wavelengths extending up to the telecommunication band of 1550 nm. Raman spectroscopy analysis reveals that engineering the interfacial layer, particularly in terms of material type and layer thickness, is crucial for fully blocking the detrimental chemical reaction between ITO and ZnPc while simultaneously maximizing the photocurrent performance. Responsivity and detectivity of the optimized device can reach 45 mA W<small><sup>−1</sup></small> and 3.2 × 10<small><sup>11</sup></small> jones, respectively, under illumination of an 850 nm light source, which are comparable to those of other CT-based OPDs. In addition, the proposed device exhibits a swift response speed of 39 ns, and the response speed at CT absorption wavelengths surpasses that at short-wavelengths attributed to intrinsic absorption. The delayed response speed at short-wavelengths stems from the exciton diffusion process as well as the electron transfer process, and electron transfer process between ZnPc and C<small><sub>60</sub></small> was confirmed through transient absorption spectroscopy. This work not only overcomes the traditional limitations of CT absorption in the NIR regions but also opens new horizons for high-speed OPDs in various applications.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 42\",\"pages\":\" 17056-17067\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02619e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02619e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Atomic-layer tailored organic photodetectors: harnessing intermolecular charge-transfer absorption for expanded spectral sensitivity up to the telecommunication band†
The intermolecular charge transfer (CT) states within organic donor–acceptor blends are essential for absorbing photon energy below the bandgaps of separate donor and acceptor materials, which could significantly broaden the response spectrum of organic photodetectors (OPDs). However, CT absorption's inefficiency in the near-infrared (NIR) spectrum limits photocurrent generation, restricting detectable wavelengths. Herein, by incorporating an atomic-thick interfacial layer, we have effectively minimized the dark current of ZnPc:C60 OPD, enabling the device to sense light with wavelengths extending up to the telecommunication band of 1550 nm. Raman spectroscopy analysis reveals that engineering the interfacial layer, particularly in terms of material type and layer thickness, is crucial for fully blocking the detrimental chemical reaction between ITO and ZnPc while simultaneously maximizing the photocurrent performance. Responsivity and detectivity of the optimized device can reach 45 mA W−1 and 3.2 × 1011 jones, respectively, under illumination of an 850 nm light source, which are comparable to those of other CT-based OPDs. In addition, the proposed device exhibits a swift response speed of 39 ns, and the response speed at CT absorption wavelengths surpasses that at short-wavelengths attributed to intrinsic absorption. The delayed response speed at short-wavelengths stems from the exciton diffusion process as well as the electron transfer process, and electron transfer process between ZnPc and C60 was confirmed through transient absorption spectroscopy. This work not only overcomes the traditional limitations of CT absorption in the NIR regions but also opens new horizons for high-speed OPDs in various applications.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors