{"title":"设计具有多重传感性能的石墨烯基太赫兹完美超材料吸收器","authors":"Leila Shakiba;Mohammad Reza Salehi;Farzin Emami","doi":"10.1109/TNANO.2024.3485758","DOIUrl":null,"url":null,"abstract":"In this article, the graphene-based metamaterial perfect absorber was investigated in the terahertz region. Due to the geometrical symmetry of the proposed absorber structure, it is insensitive to changes in polarization and its angle, and the absorption value is almost the same over angles from 0 to 90 degrees. According to the configuration of the proposed structure, it is sensitive to changes in the refractive index. Placing graphene on top of the structure improves important sensing parameters, including sensitivity, due to good interaction with the analyte. The proposed structure is being investigated for medical applications including the diagnosis of malaria infection, cancer cells, and hemoglobin identification. The obtained results show the values of sensitivity, figure of merit, and quality coefficient as 2.63(THz/RIU), 175.3(1/RIU), and 523.35, respectively. The accuracy and correctness of the simulation results are checked using the method of equivalent circuit model and transfer matrix method, and there is good agreement between the simulation results and the mentioned methods.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"741-747"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Graphene Based Terahertz Perfect Metamaterial Absorber With Multiple Sensing Performance\",\"authors\":\"Leila Shakiba;Mohammad Reza Salehi;Farzin Emami\",\"doi\":\"10.1109/TNANO.2024.3485758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the graphene-based metamaterial perfect absorber was investigated in the terahertz region. Due to the geometrical symmetry of the proposed absorber structure, it is insensitive to changes in polarization and its angle, and the absorption value is almost the same over angles from 0 to 90 degrees. According to the configuration of the proposed structure, it is sensitive to changes in the refractive index. Placing graphene on top of the structure improves important sensing parameters, including sensitivity, due to good interaction with the analyte. The proposed structure is being investigated for medical applications including the diagnosis of malaria infection, cancer cells, and hemoglobin identification. The obtained results show the values of sensitivity, figure of merit, and quality coefficient as 2.63(THz/RIU), 175.3(1/RIU), and 523.35, respectively. The accuracy and correctness of the simulation results are checked using the method of equivalent circuit model and transfer matrix method, and there is good agreement between the simulation results and the mentioned methods.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"23 \",\"pages\":\"741-747\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10733738/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10733738/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design of a Graphene Based Terahertz Perfect Metamaterial Absorber With Multiple Sensing Performance
In this article, the graphene-based metamaterial perfect absorber was investigated in the terahertz region. Due to the geometrical symmetry of the proposed absorber structure, it is insensitive to changes in polarization and its angle, and the absorption value is almost the same over angles from 0 to 90 degrees. According to the configuration of the proposed structure, it is sensitive to changes in the refractive index. Placing graphene on top of the structure improves important sensing parameters, including sensitivity, due to good interaction with the analyte. The proposed structure is being investigated for medical applications including the diagnosis of malaria infection, cancer cells, and hemoglobin identification. The obtained results show the values of sensitivity, figure of merit, and quality coefficient as 2.63(THz/RIU), 175.3(1/RIU), and 523.35, respectively. The accuracy and correctness of the simulation results are checked using the method of equivalent circuit model and transfer matrix method, and there is good agreement between the simulation results and the mentioned methods.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.