{"title":"乌拉嘧啶的 C-5 取代偶氮衍生物的设计、合成和生物学研究,作为针对乌拉嘧啶生物合成途径酶的强效和选择性抗利什曼药剂。","authors":"Tushar Das, Prakash Kumar, Sachin Kumar, Susital Mal, Saurabh Kumar, Vinod Kumar Rajana, Shriya Singh, Arunava Dasgupta, Debabrata Mandal, Subrata Das","doi":"10.1021/acsinfecdis.4c00670","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, we describe the design and synthesis of a series of C-5-substituted diazenyl derivatives of uracil, exhibiting selective and potent antileishmanial but not antibacterial or antifungal activity. The formation of the substituted derivatives was confirmed by using FTIR, <sup>1</sup>H, <sup>13</sup>C NMR, and HRMS analysis. Among all of the sets of tested compounds, only three [<b>4a, 6b</b>, and <b>8b</b>] showed the highest activity against <i>Leishmania donovani</i> (LD) promastigote and amastigote models of LD infections. Further, the cytotoxicity assays performed using three different cell lines, Vero cells, J774 cells, and THP1 cells, along with erythrocyte hemolysis assay showed the highest biocompatibility for the <b>4a</b>, making it a lead compound for further biological assays. The LD cell death associated with <b>4a</b> was not linked with ergosterol depletion, a common mechanism of action of antileishmanial drugs like amphotericin B (AmB). However, the LD cell death in the presence of <b>4a</b> was reversed significantly through supplementation of uridine monophosphate (UMP), indicating the specific role of uridine biosynthesis pathway as the target of <b>4a</b>. Furthermore, the in silico studies predicted ornithine monophosphate decarboxylase enzyme (OMPDCase) from LD as the plausible target for <b>4a</b>. The proteomics analysis showed stronger downregulation of the aforementioned OMPDCase and also for a few other enzymes that are involved in the UMP biosynthesis pathway. This indicates that OMPDCase and other enzymes that regulate the UMP biosynthesis may be the target of <b>4a</b>. Overall, the C-5-substituted diazenyl derivatives of uracil are presented here as novel and potent antileishmanial agents that can be used for treating visceral leishmaniasis (VL) wherein at present drug resistance and side effects of existing drugs demand a look for safer alternatives.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Synthesis, and Biological Studies of C-5-Substituted Diazenyl Derivatives of Uracil as Potent and Selective Antileishmanial Agents Targeting Uridine Biosynthesis Pathway Enzymes.\",\"authors\":\"Tushar Das, Prakash Kumar, Sachin Kumar, Susital Mal, Saurabh Kumar, Vinod Kumar Rajana, Shriya Singh, Arunava Dasgupta, Debabrata Mandal, Subrata Das\",\"doi\":\"10.1021/acsinfecdis.4c00670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Herein, we describe the design and synthesis of a series of C-5-substituted diazenyl derivatives of uracil, exhibiting selective and potent antileishmanial but not antibacterial or antifungal activity. The formation of the substituted derivatives was confirmed by using FTIR, <sup>1</sup>H, <sup>13</sup>C NMR, and HRMS analysis. Among all of the sets of tested compounds, only three [<b>4a, 6b</b>, and <b>8b</b>] showed the highest activity against <i>Leishmania donovani</i> (LD) promastigote and amastigote models of LD infections. Further, the cytotoxicity assays performed using three different cell lines, Vero cells, J774 cells, and THP1 cells, along with erythrocyte hemolysis assay showed the highest biocompatibility for the <b>4a</b>, making it a lead compound for further biological assays. The LD cell death associated with <b>4a</b> was not linked with ergosterol depletion, a common mechanism of action of antileishmanial drugs like amphotericin B (AmB). However, the LD cell death in the presence of <b>4a</b> was reversed significantly through supplementation of uridine monophosphate (UMP), indicating the specific role of uridine biosynthesis pathway as the target of <b>4a</b>. Furthermore, the in silico studies predicted ornithine monophosphate decarboxylase enzyme (OMPDCase) from LD as the plausible target for <b>4a</b>. The proteomics analysis showed stronger downregulation of the aforementioned OMPDCase and also for a few other enzymes that are involved in the UMP biosynthesis pathway. This indicates that OMPDCase and other enzymes that regulate the UMP biosynthesis may be the target of <b>4a</b>. Overall, the C-5-substituted diazenyl derivatives of uracil are presented here as novel and potent antileishmanial agents that can be used for treating visceral leishmaniasis (VL) wherein at present drug resistance and side effects of existing drugs demand a look for safer alternatives.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acsinfecdis.4c00670\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00670","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Design, Synthesis, and Biological Studies of C-5-Substituted Diazenyl Derivatives of Uracil as Potent and Selective Antileishmanial Agents Targeting Uridine Biosynthesis Pathway Enzymes.
Herein, we describe the design and synthesis of a series of C-5-substituted diazenyl derivatives of uracil, exhibiting selective and potent antileishmanial but not antibacterial or antifungal activity. The formation of the substituted derivatives was confirmed by using FTIR, 1H, 13C NMR, and HRMS analysis. Among all of the sets of tested compounds, only three [4a, 6b, and 8b] showed the highest activity against Leishmania donovani (LD) promastigote and amastigote models of LD infections. Further, the cytotoxicity assays performed using three different cell lines, Vero cells, J774 cells, and THP1 cells, along with erythrocyte hemolysis assay showed the highest biocompatibility for the 4a, making it a lead compound for further biological assays. The LD cell death associated with 4a was not linked with ergosterol depletion, a common mechanism of action of antileishmanial drugs like amphotericin B (AmB). However, the LD cell death in the presence of 4a was reversed significantly through supplementation of uridine monophosphate (UMP), indicating the specific role of uridine biosynthesis pathway as the target of 4a. Furthermore, the in silico studies predicted ornithine monophosphate decarboxylase enzyme (OMPDCase) from LD as the plausible target for 4a. The proteomics analysis showed stronger downregulation of the aforementioned OMPDCase and also for a few other enzymes that are involved in the UMP biosynthesis pathway. This indicates that OMPDCase and other enzymes that regulate the UMP biosynthesis may be the target of 4a. Overall, the C-5-substituted diazenyl derivatives of uracil are presented here as novel and potent antileishmanial agents that can be used for treating visceral leishmaniasis (VL) wherein at present drug resistance and side effects of existing drugs demand a look for safer alternatives.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.