{"title":"辣木的神经保护作用综述","authors":"Beniam Worku, Nafyad Tolossa","doi":"10.1155/2024/7694516","DOIUrl":null,"url":null,"abstract":"<p><p><i>Moringa oleifera</i>, which is known as a drumstick tree in different areas of the world, is well-known for many health benefits, which are attributed to the abundance of flavonoids, phenolic chemicals, and thiocyanates it contains. This review focuses on <i>M. oleifera</i>'s potential for neuroprotection, emphasizing its anti-inflammatory, antioxidant, and neurotransmitter-modulating qualities. Different parts of <i>M. oleifera</i> include leaves, roots, bark, and gum. Flowers, seeds, and seed oil are used for many health purposes, most notably in the treatment of neurological diseases. Neurodegeneration, which is characterized by the progressive death of nerve cells, is a major concern with an aging population, leading to disorders such as dementia and movement disorders. <i>M. oleifera</i> bioactive compounds improve the antioxidant defense activities of the brain, reduce inflammation, and improve neurotransmitter levels, showing potential therapeutic applications for neurodegenerative disorders. This review emphasizes the importance of further research, especially clinical trials, to fully understand and utilize <i>M. oleifera</i>'s neuroprotective capabilities.</p>","PeriodicalId":19657,"journal":{"name":"Oxidative Medicine and Cellular Longevity","volume":"2024 ","pages":"7694516"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527545/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Review on the Neuroprotective Effect of <i>Moringa oleifera</i>.\",\"authors\":\"Beniam Worku, Nafyad Tolossa\",\"doi\":\"10.1155/2024/7694516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Moringa oleifera</i>, which is known as a drumstick tree in different areas of the world, is well-known for many health benefits, which are attributed to the abundance of flavonoids, phenolic chemicals, and thiocyanates it contains. This review focuses on <i>M. oleifera</i>'s potential for neuroprotection, emphasizing its anti-inflammatory, antioxidant, and neurotransmitter-modulating qualities. Different parts of <i>M. oleifera</i> include leaves, roots, bark, and gum. Flowers, seeds, and seed oil are used for many health purposes, most notably in the treatment of neurological diseases. Neurodegeneration, which is characterized by the progressive death of nerve cells, is a major concern with an aging population, leading to disorders such as dementia and movement disorders. <i>M. oleifera</i> bioactive compounds improve the antioxidant defense activities of the brain, reduce inflammation, and improve neurotransmitter levels, showing potential therapeutic applications for neurodegenerative disorders. This review emphasizes the importance of further research, especially clinical trials, to fully understand and utilize <i>M. oleifera</i>'s neuroprotective capabilities.</p>\",\"PeriodicalId\":19657,\"journal\":{\"name\":\"Oxidative Medicine and Cellular Longevity\",\"volume\":\"2024 \",\"pages\":\"7694516\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527545/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxidative Medicine and Cellular Longevity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/7694516\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidative Medicine and Cellular Longevity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2024/7694516","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
A Review on the Neuroprotective Effect of Moringa oleifera.
Moringa oleifera, which is known as a drumstick tree in different areas of the world, is well-known for many health benefits, which are attributed to the abundance of flavonoids, phenolic chemicals, and thiocyanates it contains. This review focuses on M. oleifera's potential for neuroprotection, emphasizing its anti-inflammatory, antioxidant, and neurotransmitter-modulating qualities. Different parts of M. oleifera include leaves, roots, bark, and gum. Flowers, seeds, and seed oil are used for many health purposes, most notably in the treatment of neurological diseases. Neurodegeneration, which is characterized by the progressive death of nerve cells, is a major concern with an aging population, leading to disorders such as dementia and movement disorders. M. oleifera bioactive compounds improve the antioxidant defense activities of the brain, reduce inflammation, and improve neurotransmitter levels, showing potential therapeutic applications for neurodegenerative disorders. This review emphasizes the importance of further research, especially clinical trials, to fully understand and utilize M. oleifera's neuroprotective capabilities.
期刊介绍:
Oxidative Medicine and Cellular Longevity is a unique peer-reviewed, Open Access journal that publishes original research and review articles dealing with the cellular and molecular mechanisms of oxidative stress in the nervous system and related organ systems in relation to aging, immune function, vascular biology, metabolism, cellular survival and cellular longevity. Oxidative stress impacts almost all acute and chronic progressive disorders and on a cellular basis is intimately linked to aging, cardiovascular disease, cancer, immune function, metabolism and neurodegeneration. The journal fills a significant void in today’s scientific literature and serves as an international forum for the scientific community worldwide to translate pioneering “bench to bedside” research into clinical strategies.