拉普拉斯{-1,0,1}和{-1,1}对角线化图形

IF 1 3区 数学 Q1 MATHEMATICS
Nathaniel Johnston , Sarah Plosker
{"title":"拉普拉斯{-1,0,1}和{-1,1}对角线化图形","authors":"Nathaniel Johnston ,&nbsp;Sarah Plosker","doi":"10.1016/j.laa.2024.10.016","DOIUrl":null,"url":null,"abstract":"<div><div>A graph is called <em>Laplacian integral</em> if the eigenvalues of its Laplacian matrix are all integers. We investigate the subset of these graphs whose Laplacian is furthermore diagonalized by a matrix with entries coming from a fixed set, in particular, the sets <span><math><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span> or <span><math><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>. Such graphs include as special cases the recently-investigated families of <em>Hadamard-diagonalizable</em> and <em>weakly Hadamard-diagonalizable</em> graphs. As a combinatorial tool to aid in our investigation, we introduce a family of vectors that we call <em>balanced</em>, which generalizes totally balanced partitions, regular sequences, and complete partitions. We show that balanced vectors completely characterize which graph complements and complete multipartite graphs are <span><math><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-diagonalizable, and we furthermore prove results on diagonalizability of the Cartesian product, disjoint union, and join of graphs. Particular attention is paid to the <span><math><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>- and <span><math><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-diagonalizability of the complete graphs and complete multipartite graphs. Finally, we provide a complete list of all simple, connected graphs on nine or fewer vertices that are <span><math><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>- or <span><math><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-diagonalizable.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"704 ","pages":"Pages 309-339"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laplacian {−1,0,1}- and {−1,1}-diagonalizable graphs\",\"authors\":\"Nathaniel Johnston ,&nbsp;Sarah Plosker\",\"doi\":\"10.1016/j.laa.2024.10.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A graph is called <em>Laplacian integral</em> if the eigenvalues of its Laplacian matrix are all integers. We investigate the subset of these graphs whose Laplacian is furthermore diagonalized by a matrix with entries coming from a fixed set, in particular, the sets <span><math><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span> or <span><math><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>. Such graphs include as special cases the recently-investigated families of <em>Hadamard-diagonalizable</em> and <em>weakly Hadamard-diagonalizable</em> graphs. As a combinatorial tool to aid in our investigation, we introduce a family of vectors that we call <em>balanced</em>, which generalizes totally balanced partitions, regular sequences, and complete partitions. We show that balanced vectors completely characterize which graph complements and complete multipartite graphs are <span><math><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-diagonalizable, and we furthermore prove results on diagonalizability of the Cartesian product, disjoint union, and join of graphs. Particular attention is paid to the <span><math><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>- and <span><math><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-diagonalizability of the complete graphs and complete multipartite graphs. Finally, we provide a complete list of all simple, connected graphs on nine or fewer vertices that are <span><math><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>- or <span><math><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>-diagonalizable.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"704 \",\"pages\":\"Pages 309-339\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003951\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003951","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果一个图的拉普拉斯矩阵的特征值都是整数,那么这个图就叫做拉普拉斯积分图。我们将研究这些图形的子集,它们的拉普拉卡矩阵由一个矩阵进一步对角化,该矩阵的条目来自一个固定集合,特别是{-1,0,1}或{-1,1}集合。这类图的特例包括最近研究的哈达对角化图和弱哈达对角化图系列。作为帮助我们研究的组合工具,我们引入了一个向量族,我们称之为平衡向量,它概括了完全平衡分区、正则序列和完全分区。我们证明了平衡向量完全表征了哪些图补集和完整多方图是{-1,0,1}可对角化的,并进一步证明了笛卡尔积、不相邻联盟和图连接的可对角化结果。我们特别关注完整图和完整多方图的{-1,0,1}对角化和{-1,1}对角化。最后,我们提供了一份完整的列表,列出了所有九个或更少的顶点上可{-1,0,1}对角化或{-1,1}对角化的简单连通图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laplacian {−1,0,1}- and {−1,1}-diagonalizable graphs
A graph is called Laplacian integral if the eigenvalues of its Laplacian matrix are all integers. We investigate the subset of these graphs whose Laplacian is furthermore diagonalized by a matrix with entries coming from a fixed set, in particular, the sets {1,0,1} or {1,1}. Such graphs include as special cases the recently-investigated families of Hadamard-diagonalizable and weakly Hadamard-diagonalizable graphs. As a combinatorial tool to aid in our investigation, we introduce a family of vectors that we call balanced, which generalizes totally balanced partitions, regular sequences, and complete partitions. We show that balanced vectors completely characterize which graph complements and complete multipartite graphs are {1,0,1}-diagonalizable, and we furthermore prove results on diagonalizability of the Cartesian product, disjoint union, and join of graphs. Particular attention is paid to the {1,0,1}- and {1,1}-diagonalizability of the complete graphs and complete multipartite graphs. Finally, we provide a complete list of all simple, connected graphs on nine or fewer vertices that are {1,0,1}- or {1,1}-diagonalizable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信