6 × 6 矩阵的帕斯猜想证明

IF 1 3区 数学 Q1 MATHEMATICS
M.A. Khrystik , A.M. Maksaev
{"title":"6 × 6 矩阵的帕斯猜想证明","authors":"M.A. Khrystik ,&nbsp;A.M. Maksaev","doi":"10.1016/j.laa.2024.10.019","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> be the algebra of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices over a field <span><math><mi>F</mi></math></span> and let <span><math><mi>S</mi></math></span> be its generating set (as an <span><math><mi>F</mi></math></span>-algebra). The length of <span><math><mi>S</mi></math></span> is the smallest number <em>k</em> such that <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> equals the <span><math><mi>F</mi></math></span>-linear span of all products of the length at most <em>k</em> of matrices from <span><math><mi>S</mi></math></span>. The length of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span>, denoted by <span><math><mi>l</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo><mo>)</mo></math></span>, is defined to be the maximal length of any of its generating sets. In 1984, Paz conjectured that <span><math><mi>l</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo><mo>)</mo><mo>=</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span>, for any field <span><math><mi>F</mi></math></span>. This conjecture has been verified only for <span><math><mi>n</mi><mo>⩽</mo><mn>5</mn></math></span>. In this paper, we prove Paz's conjecture for <span><math><mi>n</mi><mo>=</mo><mn>6</mn></math></span>, meaning that <span><math><mi>l</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo><mo>)</mo><mo>=</mo><mn>10</mn></math></span>. We also prove that <span><math><mn>12</mn><mo>⩽</mo><mi>l</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo><mo>)</mo><mo>⩽</mo><mn>13</mn></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"704 ","pages":"Pages 249-269"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A proof of the Paz conjecture for 6 × 6 matrices\",\"authors\":\"M.A. Khrystik ,&nbsp;A.M. Maksaev\",\"doi\":\"10.1016/j.laa.2024.10.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> be the algebra of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices over a field <span><math><mi>F</mi></math></span> and let <span><math><mi>S</mi></math></span> be its generating set (as an <span><math><mi>F</mi></math></span>-algebra). The length of <span><math><mi>S</mi></math></span> is the smallest number <em>k</em> such that <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> equals the <span><math><mi>F</mi></math></span>-linear span of all products of the length at most <em>k</em> of matrices from <span><math><mi>S</mi></math></span>. The length of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span>, denoted by <span><math><mi>l</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo><mo>)</mo></math></span>, is defined to be the maximal length of any of its generating sets. In 1984, Paz conjectured that <span><math><mi>l</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo><mo>)</mo><mo>=</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span>, for any field <span><math><mi>F</mi></math></span>. This conjecture has been verified only for <span><math><mi>n</mi><mo>⩽</mo><mn>5</mn></math></span>. In this paper, we prove Paz's conjecture for <span><math><mi>n</mi><mo>=</mo><mn>6</mn></math></span>, meaning that <span><math><mi>l</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo><mo>)</mo><mo>=</mo><mn>10</mn></math></span>. We also prove that <span><math><mn>12</mn><mo>⩽</mo><mi>l</mi><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo><mo>)</mo><mo>⩽</mo><mn>13</mn></math></span>.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"704 \",\"pages\":\"Pages 249-269\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003975\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003975","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 Mn(F) 是一个域 F 上 n×n 矩阵的代数,设 S 是它的生成集(作为一个 F 代数)。S 的长度是最小数 k,使得 Mn(F) 等于来自 S 的矩阵的所有长度至多为 k 的乘积的 F 线性跨度。Mn(F) 的长度用 l(Mn(F)) 表示,定义为其任何一个生成集的最大长度。1984 年,帕兹猜想,对于任意域 F,l(Mn(F))=2n-2。在本文中,我们证明了 n=6 时帕斯的猜想,即 l(M6(F))=10。我们还证明了 12⩽l(M7(F))⩽13。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A proof of the Paz conjecture for 6 × 6 matrices
Let Mn(F) be the algebra of n×n matrices over a field F and let S be its generating set (as an F-algebra). The length of S is the smallest number k such that Mn(F) equals the F-linear span of all products of the length at most k of matrices from S. The length of Mn(F), denoted by l(Mn(F)), is defined to be the maximal length of any of its generating sets. In 1984, Paz conjectured that l(Mn(F))=2n2, for any field F. This conjecture has been verified only for n5. In this paper, we prove Paz's conjecture for n=6, meaning that l(M6(F))=10. We also prove that 12l(M7(F))13.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信