围绕强算子凸函数

IF 1 3区 数学 Q1 MATHEMATICS
Nahid Gharakhanlu , Mohammad Sal Moslehian
{"title":"围绕强算子凸函数","authors":"Nahid Gharakhanlu ,&nbsp;Mohammad Sal Moslehian","doi":"10.1016/j.laa.2024.10.021","DOIUrl":null,"url":null,"abstract":"<div><div>We establish the subadditivity of strongly operator convex functions on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> and <span><math><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mn>0</mn><mo>)</mo></math></span>. By utilizing the properties of strongly operator convex functions, we derive the subadditivity property of operator monotone functions on <span><math><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mn>0</mn><mo>)</mo></math></span>. We introduce new operator inequalities involving strongly operator convex functions and weighted operator means. In addition, we explore the relationship between strongly operator convex and Kwong functions on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. Moreover, we study strongly operator convex functions on <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> with <span><math><mo>−</mo><mo>∞</mo><mo>&lt;</mo><mi>a</mi></math></span> and on the left half-line <span><math><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mi>b</mi><mo>)</mo></math></span> with <span><math><mi>b</mi><mo>&lt;</mo><mo>∞</mo></math></span>. We demonstrate that any nonconstant strongly operator convex function on <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> is strictly operator decreasing, and any nonconstant strongly operator convex function on <span><math><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mi>b</mi><mo>)</mo></math></span> is strictly operator monotone. Consequently, for a strongly operator convex function <em>g</em> on <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> or <span><math><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mi>b</mi><mo>)</mo></math></span>, we provide lower bounds for <span><math><mo>|</mo><mi>g</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>−</mo><mi>g</mi><mo>(</mo><mi>B</mi><mo>)</mo><mo>|</mo></math></span> whenever <span><math><mi>A</mi><mo>−</mo><mi>B</mi><mo>&gt;</mo><mn>0</mn></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"704 ","pages":"Pages 231-248"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Around strongly operator convex functions\",\"authors\":\"Nahid Gharakhanlu ,&nbsp;Mohammad Sal Moslehian\",\"doi\":\"10.1016/j.laa.2024.10.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish the subadditivity of strongly operator convex functions on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> and <span><math><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mn>0</mn><mo>)</mo></math></span>. By utilizing the properties of strongly operator convex functions, we derive the subadditivity property of operator monotone functions on <span><math><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mn>0</mn><mo>)</mo></math></span>. We introduce new operator inequalities involving strongly operator convex functions and weighted operator means. In addition, we explore the relationship between strongly operator convex and Kwong functions on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. Moreover, we study strongly operator convex functions on <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> with <span><math><mo>−</mo><mo>∞</mo><mo>&lt;</mo><mi>a</mi></math></span> and on the left half-line <span><math><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mi>b</mi><mo>)</mo></math></span> with <span><math><mi>b</mi><mo>&lt;</mo><mo>∞</mo></math></span>. We demonstrate that any nonconstant strongly operator convex function on <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> is strictly operator decreasing, and any nonconstant strongly operator convex function on <span><math><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mi>b</mi><mo>)</mo></math></span> is strictly operator monotone. Consequently, for a strongly operator convex function <em>g</em> on <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> or <span><math><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mi>b</mi><mo>)</mo></math></span>, we provide lower bounds for <span><math><mo>|</mo><mi>g</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>−</mo><mi>g</mi><mo>(</mo><mi>B</mi><mo>)</mo><mo>|</mo></math></span> whenever <span><math><mi>A</mi><mo>−</mo><mi>B</mi><mo>&gt;</mo><mn>0</mn></math></span>.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"704 \",\"pages\":\"Pages 231-248\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524004002\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524004002","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了(0,∞)和(-∞,0)上强算子凸函数的次可加性。利用强算子凸函数的性质,我们推导出了(-∞,0)上算子单调函数的亚可加性性质。我们引入了涉及强算子凸函数和加权算子均值的新算子不等式。此外,我们还探讨了(0,∞)上强算子凸函数与邝函数之间的关系。此外,我们还研究了-∞<a 的 (a,∞) 上的强算子凸函数和 b<∞ 的左半线 (-∞,b) 上的强算子凸函数。我们证明,(a,∞) 上的任何非定常强算子凸函数都是严格算子递减的,而(-∞,b) 上的任何非定常强算子凸函数都是严格算子单调的。因此,对于(a,∞)或(-∞,b)上的强算子凸函数g,只要A-B>0,我们就提供|g(A)-g(B)|的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Around strongly operator convex functions
We establish the subadditivity of strongly operator convex functions on (0,) and (,0). By utilizing the properties of strongly operator convex functions, we derive the subadditivity property of operator monotone functions on (,0). We introduce new operator inequalities involving strongly operator convex functions and weighted operator means. In addition, we explore the relationship between strongly operator convex and Kwong functions on (0,). Moreover, we study strongly operator convex functions on (a,) with <a and on the left half-line (,b) with b<. We demonstrate that any nonconstant strongly operator convex function on (a,) is strictly operator decreasing, and any nonconstant strongly operator convex function on (,b) is strictly operator monotone. Consequently, for a strongly operator convex function g on (a,) or (,b), we provide lower bounds for |g(A)g(B)| whenever AB>0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信