{"title":"区块链驱动的转型:地方能源网络的去中心化规划和安全的点对点交易","authors":"Bingkun Wang , Xiaolin Guo","doi":"10.1016/j.segan.2024.101556","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel blockchain-based automatic load response architecture for local energy networks, focusing on secure peer-to-peer (P2P) energy trading and decentralized planning. Departing from traditional centralized methods, the proposed system leverages non-cooperative game theory for pricing-based decentralized planning, enabling efficient resource distribution without a central authority. A key contribution is the integration of a machine-governed smart contract mechanism, which ensures secure, transparent, and consistent transactions in P2P energy trading. Additionally, an adaptive evaluation system for transaction nodes enhances the system’s responsiveness to dynamic energy demands. A distributed algorithm is developed to optimize the implementation of this architecture, ensuring practical efficiency. Case studies confirm significant improvements in operational efficiency, security, and economic outcomes, marking a substantial advancement in decentralized energy management. Key findings demonstrate that the proposed automatic load response strategy significantly enhances load curve stability, achieving a 99.16 % reduction in net load fluctuations and an 8.24 % reduction in operational costs compared to traditional methods. Additionally, the framework improves the self-consumption rate of renewable energy by up to 14.62 % and reduces the average cost for electric vehicle (EV) users by 26.12 %. These results highlight the framework's effectiveness in fostering a more balanced supply-demand relationship within local energy networks while ensuring economic and computational efficiency. The study underscores the potential to revolutionize decentralized energy management, offering a sustainable and cost-effective solution for future energy systems.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"40 ","pages":"Article 101556"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blockchain-enabled transformation: Decentralized planning and secure peer-to-peer trading in local energy networks\",\"authors\":\"Bingkun Wang , Xiaolin Guo\",\"doi\":\"10.1016/j.segan.2024.101556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a novel blockchain-based automatic load response architecture for local energy networks, focusing on secure peer-to-peer (P2P) energy trading and decentralized planning. Departing from traditional centralized methods, the proposed system leverages non-cooperative game theory for pricing-based decentralized planning, enabling efficient resource distribution without a central authority. A key contribution is the integration of a machine-governed smart contract mechanism, which ensures secure, transparent, and consistent transactions in P2P energy trading. Additionally, an adaptive evaluation system for transaction nodes enhances the system’s responsiveness to dynamic energy demands. A distributed algorithm is developed to optimize the implementation of this architecture, ensuring practical efficiency. Case studies confirm significant improvements in operational efficiency, security, and economic outcomes, marking a substantial advancement in decentralized energy management. Key findings demonstrate that the proposed automatic load response strategy significantly enhances load curve stability, achieving a 99.16 % reduction in net load fluctuations and an 8.24 % reduction in operational costs compared to traditional methods. Additionally, the framework improves the self-consumption rate of renewable energy by up to 14.62 % and reduces the average cost for electric vehicle (EV) users by 26.12 %. These results highlight the framework's effectiveness in fostering a more balanced supply-demand relationship within local energy networks while ensuring economic and computational efficiency. The study underscores the potential to revolutionize decentralized energy management, offering a sustainable and cost-effective solution for future energy systems.</div></div>\",\"PeriodicalId\":56142,\"journal\":{\"name\":\"Sustainable Energy Grids & Networks\",\"volume\":\"40 \",\"pages\":\"Article 101556\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy Grids & Networks\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352467724002856\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467724002856","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Blockchain-enabled transformation: Decentralized planning and secure peer-to-peer trading in local energy networks
This paper introduces a novel blockchain-based automatic load response architecture for local energy networks, focusing on secure peer-to-peer (P2P) energy trading and decentralized planning. Departing from traditional centralized methods, the proposed system leverages non-cooperative game theory for pricing-based decentralized planning, enabling efficient resource distribution without a central authority. A key contribution is the integration of a machine-governed smart contract mechanism, which ensures secure, transparent, and consistent transactions in P2P energy trading. Additionally, an adaptive evaluation system for transaction nodes enhances the system’s responsiveness to dynamic energy demands. A distributed algorithm is developed to optimize the implementation of this architecture, ensuring practical efficiency. Case studies confirm significant improvements in operational efficiency, security, and economic outcomes, marking a substantial advancement in decentralized energy management. Key findings demonstrate that the proposed automatic load response strategy significantly enhances load curve stability, achieving a 99.16 % reduction in net load fluctuations and an 8.24 % reduction in operational costs compared to traditional methods. Additionally, the framework improves the self-consumption rate of renewable energy by up to 14.62 % and reduces the average cost for electric vehicle (EV) users by 26.12 %. These results highlight the framework's effectiveness in fostering a more balanced supply-demand relationship within local energy networks while ensuring economic and computational efficiency. The study underscores the potential to revolutionize decentralized energy management, offering a sustainable and cost-effective solution for future energy systems.
期刊介绍:
Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.