利用具有高斯过程趋势的克里金法高效模拟三维条件随机场

IF 5.3 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
{"title":"利用具有高斯过程趋势的克里金法高效模拟三维条件随机场","authors":"","doi":"10.1016/j.compgeo.2024.106862","DOIUrl":null,"url":null,"abstract":"<div><div>Previous investigations have shown that for the modeling the soil spatial variability, the Gaussian process regression (GPR) provides a more plausible trend model than the linear combination of basis functions. However, the effectiveness of the conditional random (CRF) simulation based on the GPR trend model (denoted by the t-GPR kriging) has not been investigated. This study first addresses the high computational cost issue of the t-GPR kriging for realisic 3D problems by deriving the Kronecker-product algorithms. Then, this study further investigates the effectiveness of the t-GPR kriging in CRF simulation using real case studies. It is shown that with the Kronecker-product derivations, the computational time can be dramatically reduced such that the t-GPR kriging can conduct CRF simulation for full-scale 3D problems.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient simulation of 3D conditional random field using kriging with Gaussian-process trend\",\"authors\":\"\",\"doi\":\"10.1016/j.compgeo.2024.106862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Previous investigations have shown that for the modeling the soil spatial variability, the Gaussian process regression (GPR) provides a more plausible trend model than the linear combination of basis functions. However, the effectiveness of the conditional random (CRF) simulation based on the GPR trend model (denoted by the t-GPR kriging) has not been investigated. This study first addresses the high computational cost issue of the t-GPR kriging for realisic 3D problems by deriving the Kronecker-product algorithms. Then, this study further investigates the effectiveness of the t-GPR kriging in CRF simulation using real case studies. It is shown that with the Kronecker-product derivations, the computational time can be dramatically reduced such that the t-GPR kriging can conduct CRF simulation for full-scale 3D problems.</div></div>\",\"PeriodicalId\":55217,\"journal\":{\"name\":\"Computers and Geotechnics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266352X24008012\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X24008012","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

以往的研究表明,对于土壤空间变异性建模,高斯过程回归(GPR)提供了比基函数线性组合更可信的趋势模型。然而,基于 GPR 趋势模型的条件随机(CRF)模拟(表示为 t-GPR 克里金)的有效性尚未得到研究。本研究首先通过推导 Kronecker-product(克朗克积)算法,解决了三维实际问题中 t-GPR 克里格计算成本高的问题。然后,本研究利用实际案例进一步研究了 t-GPR 克里金法在 CRF 仿真中的有效性。结果表明,通过 Kronecker-product推导,计算时间可以大大缩短,因此 t-GPR 克里金法可以对全尺度三维问题进行 CRF 仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient simulation of 3D conditional random field using kriging with Gaussian-process trend
Previous investigations have shown that for the modeling the soil spatial variability, the Gaussian process regression (GPR) provides a more plausible trend model than the linear combination of basis functions. However, the effectiveness of the conditional random (CRF) simulation based on the GPR trend model (denoted by the t-GPR kriging) has not been investigated. This study first addresses the high computational cost issue of the t-GPR kriging for realisic 3D problems by deriving the Kronecker-product algorithms. Then, this study further investigates the effectiveness of the t-GPR kriging in CRF simulation using real case studies. It is shown that with the Kronecker-product derivations, the computational time can be dramatically reduced such that the t-GPR kriging can conduct CRF simulation for full-scale 3D problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers and Geotechnics
Computers and Geotechnics 地学-地球科学综合
CiteScore
9.10
自引率
15.10%
发文量
438
审稿时长
45 days
期刊介绍: The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信