Jihyung Kim*, Kyowon Jeong, Philipp T. Kaulich, Konrad Winkels, Andreas Tholey and Oliver Kohlbacher*,
{"title":"FLASHQuant:自上而下蛋白质组学中蛋白质形式定量的快速算法","authors":"Jihyung Kim*, Kyowon Jeong, Philipp T. Kaulich, Konrad Winkels, Andreas Tholey and Oliver Kohlbacher*, ","doi":"10.1021/acs.analchem.4c0311710.1021/acs.analchem.4c03117","DOIUrl":null,"url":null,"abstract":"<p >Accurate quantification of individual proteoforms is a crucial step in identifying proteome-wide alterations in different biological conditions. Intact proteoforms have been analyzed predominantly by liquid chromatography–mass spectrometry (LC-MS)-based top-down proteomics (TDP) and quantified primarily by the label-free quantification (LFQ) method, as it requires no additional costly labeling. In TDP, due to frequent coelution and complex signal structures, overlapping signals deriving from multiple proteoforms complicate accurate quantification. Here, we introduce FLASHQuant for MS1-level LFQ analysis in TDP, which is capable of automatically resolving and quantifying coeluting proteoforms. In benchmark tests performed with both spike-in proteins and proteome-level mixture data sets, FLASHQuant was shown to perform highly accurate and reproducible quantification in short runtimes of just a few minutes per LC-MS run. In particular, it was demonstrated that resolving overlapping proteoforms boosts the quantification accuracy. FLASHQuant is publicly available as platform-independent open-source software at https://openms.org/flashquant/, accompanied by the simple alignment algorithm ConsensusFeatureGroupDetector for multiple LC-MS runs.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"96 43","pages":"17227–17234 17227–17234"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.analchem.4c03117","citationCount":"0","resultStr":"{\"title\":\"FLASHQuant: A Fast Algorithm for Proteoform Quantification in Top-Down Proteomics\",\"authors\":\"Jihyung Kim*, Kyowon Jeong, Philipp T. Kaulich, Konrad Winkels, Andreas Tholey and Oliver Kohlbacher*, \",\"doi\":\"10.1021/acs.analchem.4c0311710.1021/acs.analchem.4c03117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Accurate quantification of individual proteoforms is a crucial step in identifying proteome-wide alterations in different biological conditions. Intact proteoforms have been analyzed predominantly by liquid chromatography–mass spectrometry (LC-MS)-based top-down proteomics (TDP) and quantified primarily by the label-free quantification (LFQ) method, as it requires no additional costly labeling. In TDP, due to frequent coelution and complex signal structures, overlapping signals deriving from multiple proteoforms complicate accurate quantification. Here, we introduce FLASHQuant for MS1-level LFQ analysis in TDP, which is capable of automatically resolving and quantifying coeluting proteoforms. In benchmark tests performed with both spike-in proteins and proteome-level mixture data sets, FLASHQuant was shown to perform highly accurate and reproducible quantification in short runtimes of just a few minutes per LC-MS run. In particular, it was demonstrated that resolving overlapping proteoforms boosts the quantification accuracy. FLASHQuant is publicly available as platform-independent open-source software at https://openms.org/flashquant/, accompanied by the simple alignment algorithm ConsensusFeatureGroupDetector for multiple LC-MS runs.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"96 43\",\"pages\":\"17227–17234 17227–17234\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.analchem.4c03117\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.4c03117\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.4c03117","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
FLASHQuant: A Fast Algorithm for Proteoform Quantification in Top-Down Proteomics
Accurate quantification of individual proteoforms is a crucial step in identifying proteome-wide alterations in different biological conditions. Intact proteoforms have been analyzed predominantly by liquid chromatography–mass spectrometry (LC-MS)-based top-down proteomics (TDP) and quantified primarily by the label-free quantification (LFQ) method, as it requires no additional costly labeling. In TDP, due to frequent coelution and complex signal structures, overlapping signals deriving from multiple proteoforms complicate accurate quantification. Here, we introduce FLASHQuant for MS1-level LFQ analysis in TDP, which is capable of automatically resolving and quantifying coeluting proteoforms. In benchmark tests performed with both spike-in proteins and proteome-level mixture data sets, FLASHQuant was shown to perform highly accurate and reproducible quantification in short runtimes of just a few minutes per LC-MS run. In particular, it was demonstrated that resolving overlapping proteoforms boosts the quantification accuracy. FLASHQuant is publicly available as platform-independent open-source software at https://openms.org/flashquant/, accompanied by the simple alignment algorithm ConsensusFeatureGroupDetector for multiple LC-MS runs.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.