Ting Wang, Jinchao Wei, Zehua Cheng, Mai Luo, Liang Zou, Lele Zhang, Mei Zhang* and Peng Li*,
{"title":"具有可控 \"新月弧 \"面的等离子纳米立方体:用于高可靠、高灵敏度 SERS 检测的可调热点工程","authors":"Ting Wang, Jinchao Wei, Zehua Cheng, Mai Luo, Liang Zou, Lele Zhang, Mei Zhang* and Peng Li*, ","doi":"10.1021/acs.analchem.4c0533410.1021/acs.analchem.4c05334","DOIUrl":null,"url":null,"abstract":"<p >The fine control of the nanogap and morphology of metal nanoparticles (NPs) has always been an obstacle, hindering the development and application of surface-enhanced Raman scattering (SERS) quantitative detection. Here, Au/4-mercaptobenzoic acid@Ag@Au–Ag bimetal core–shell nanocubes (NCs) with a “crescent arc” facet (C-Au/4MBA@Ag NCs) as a highly reliable and sensitive surface-enhanced Raman scattering SERS substrate is proposed for the first time. The bifunctional internal standard (IS) molecules (4MBA) govern the morphology of metal shells to maintain cubic configuration and provide calibration for SERS signals’ flotation. In parallel, the controllable curvature of the C-Au/4MBA@Ag NCs is directly modulated by adjusting the relative rates of the galvanic replacement and co-reduction reaction, which generates a controllable interparticle nanogap to offer large depositing spaces for analytes and improve authoritative SERS signals’ enhancement. The proposed C-Au/4MBA@Ag NCs exhibit an enhancement factor of up to 4.8 × 10<sup>10</sup> and contribute to the ultralow RSD (7.9%). These C-Au/4MBA@Ag NCs also enable the detection of hazardous pesticide residues such as methamidophos and thiram in herbal plants with a complex matrix, with an average detection accuracy of up to 96%. In summary, this study achieves a fine control strategy of the “crescent arc” surface for improving SERS performance and explores the practical application potential for accurate and sensitive Raman detection of hazardous substances.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"96 43","pages":"17453–17462 17453–17462"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.analchem.4c05334","citationCount":"0","resultStr":"{\"title\":\"Plasmonic Nanocubes with a Controllable “Crescent Arc” Facet: Tunable Hotspot Engineering for Highly Reliable and Sensitive SERS Detection\",\"authors\":\"Ting Wang, Jinchao Wei, Zehua Cheng, Mai Luo, Liang Zou, Lele Zhang, Mei Zhang* and Peng Li*, \",\"doi\":\"10.1021/acs.analchem.4c0533410.1021/acs.analchem.4c05334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The fine control of the nanogap and morphology of metal nanoparticles (NPs) has always been an obstacle, hindering the development and application of surface-enhanced Raman scattering (SERS) quantitative detection. Here, Au/4-mercaptobenzoic acid@Ag@Au–Ag bimetal core–shell nanocubes (NCs) with a “crescent arc” facet (C-Au/4MBA@Ag NCs) as a highly reliable and sensitive surface-enhanced Raman scattering SERS substrate is proposed for the first time. The bifunctional internal standard (IS) molecules (4MBA) govern the morphology of metal shells to maintain cubic configuration and provide calibration for SERS signals’ flotation. In parallel, the controllable curvature of the C-Au/4MBA@Ag NCs is directly modulated by adjusting the relative rates of the galvanic replacement and co-reduction reaction, which generates a controllable interparticle nanogap to offer large depositing spaces for analytes and improve authoritative SERS signals’ enhancement. The proposed C-Au/4MBA@Ag NCs exhibit an enhancement factor of up to 4.8 × 10<sup>10</sup> and contribute to the ultralow RSD (7.9%). These C-Au/4MBA@Ag NCs also enable the detection of hazardous pesticide residues such as methamidophos and thiram in herbal plants with a complex matrix, with an average detection accuracy of up to 96%. In summary, this study achieves a fine control strategy of the “crescent arc” surface for improving SERS performance and explores the practical application potential for accurate and sensitive Raman detection of hazardous substances.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"96 43\",\"pages\":\"17453–17462 17453–17462\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.analchem.4c05334\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.4c05334\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.4c05334","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Plasmonic Nanocubes with a Controllable “Crescent Arc” Facet: Tunable Hotspot Engineering for Highly Reliable and Sensitive SERS Detection
The fine control of the nanogap and morphology of metal nanoparticles (NPs) has always been an obstacle, hindering the development and application of surface-enhanced Raman scattering (SERS) quantitative detection. Here, Au/4-mercaptobenzoic acid@Ag@Au–Ag bimetal core–shell nanocubes (NCs) with a “crescent arc” facet (C-Au/4MBA@Ag NCs) as a highly reliable and sensitive surface-enhanced Raman scattering SERS substrate is proposed for the first time. The bifunctional internal standard (IS) molecules (4MBA) govern the morphology of metal shells to maintain cubic configuration and provide calibration for SERS signals’ flotation. In parallel, the controllable curvature of the C-Au/4MBA@Ag NCs is directly modulated by adjusting the relative rates of the galvanic replacement and co-reduction reaction, which generates a controllable interparticle nanogap to offer large depositing spaces for analytes and improve authoritative SERS signals’ enhancement. The proposed C-Au/4MBA@Ag NCs exhibit an enhancement factor of up to 4.8 × 1010 and contribute to the ultralow RSD (7.9%). These C-Au/4MBA@Ag NCs also enable the detection of hazardous pesticide residues such as methamidophos and thiram in herbal plants with a complex matrix, with an average detection accuracy of up to 96%. In summary, this study achieves a fine control strategy of the “crescent arc” surface for improving SERS performance and explores the practical application potential for accurate and sensitive Raman detection of hazardous substances.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.