{"title":"利用去噪扩散模型的基于补丁的水下图像增强方法","authors":"Haisheng Xia, Binglei Bao, Fei Liao, Jintao Chen, Binglu Wang, Zhijun Li","doi":"10.1109/TCYB.2024.3482174","DOIUrl":null,"url":null,"abstract":"<p><p>The enhancement of underwater images has emerged as a significant technological challenge in advancing marine research and exploration tasks. Due to the scattering of suspended particles and absorption of light in underwater environments, underwater images tend to present blurriness and predominantly color distortion. In this study, we propose a novel approach utilizing denoising diffusion models to improve underwater degraded images. After training the noise estimation network of the denoising diffusion models, we accelerate the deterministic sampling process with denoising diffusion implicit models. We also propose a patch-based method by implementing average sampling between overlapping image patches at each sampling step, enabling the generation of images at arbitrary resolution while preserving their natural appearance and details. Through benchmark experiments, we illustrate that our method outperforms or closely approaches state-of-the-art techniques in terms of effectiveness and performance. We demonstrate that our approach reduces the interference of underwater environments with the semantic information of the images by salient object detection experiments.</p>","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"PP ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Patch-Based Method for Underwater Image Enhancement With Denoising Diffusion Models.\",\"authors\":\"Haisheng Xia, Binglei Bao, Fei Liao, Jintao Chen, Binglu Wang, Zhijun Li\",\"doi\":\"10.1109/TCYB.2024.3482174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The enhancement of underwater images has emerged as a significant technological challenge in advancing marine research and exploration tasks. Due to the scattering of suspended particles and absorption of light in underwater environments, underwater images tend to present blurriness and predominantly color distortion. In this study, we propose a novel approach utilizing denoising diffusion models to improve underwater degraded images. After training the noise estimation network of the denoising diffusion models, we accelerate the deterministic sampling process with denoising diffusion implicit models. We also propose a patch-based method by implementing average sampling between overlapping image patches at each sampling step, enabling the generation of images at arbitrary resolution while preserving their natural appearance and details. Through benchmark experiments, we illustrate that our method outperforms or closely approaches state-of-the-art techniques in terms of effectiveness and performance. We demonstrate that our approach reduces the interference of underwater environments with the semantic information of the images by salient object detection experiments.</p>\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TCYB.2024.3482174\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TCYB.2024.3482174","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A Patch-Based Method for Underwater Image Enhancement With Denoising Diffusion Models.
The enhancement of underwater images has emerged as a significant technological challenge in advancing marine research and exploration tasks. Due to the scattering of suspended particles and absorption of light in underwater environments, underwater images tend to present blurriness and predominantly color distortion. In this study, we propose a novel approach utilizing denoising diffusion models to improve underwater degraded images. After training the noise estimation network of the denoising diffusion models, we accelerate the deterministic sampling process with denoising diffusion implicit models. We also propose a patch-based method by implementing average sampling between overlapping image patches at each sampling step, enabling the generation of images at arbitrary resolution while preserving their natural appearance and details. Through benchmark experiments, we illustrate that our method outperforms or closely approaches state-of-the-art techniques in terms of effectiveness and performance. We demonstrate that our approach reduces the interference of underwater environments with the semantic information of the images by salient object detection experiments.
期刊介绍:
The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.