利用机器学习预测随机电报噪声诱发的阈值电压偏移及其扩展依赖性

IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Eunseok Oh;Hyungcheol Shin
{"title":"利用机器学习预测随机电报噪声诱发的阈值电压偏移及其扩展依赖性","authors":"Eunseok Oh;Hyungcheol Shin","doi":"10.1109/JEDS.2024.3471999","DOIUrl":null,"url":null,"abstract":"Random telegraph noise (RTN) shifts the threshold voltage (Vt) of 3D NAND flash memory cells, making it a key factor of the device malfunction. The aim of this study is to predict the distribution of RTN induced \n<inline-formula> <tex-math>${\\mathrm { V}}_{\\mathrm { t}}$ </tex-math></inline-formula>\n shift in 3D NAND flash memory. Artificial neural network (ANN)-based machine learning (ML) is used for this prediction. With 2000 samples, ANN is trained and tested to predict the \n<inline-formula> <tex-math>${\\mathrm { V}}_{\\mathrm { t}}$ </tex-math></inline-formula>\n shift of random cells with high reliability. Furthermore, ANN is applied to predict the tendency of RTN-induced \n<inline-formula> <tex-math>${\\mathrm { V}}_{\\mathrm { t}}$ </tex-math></inline-formula>\n shift in scaled 3D NAND. Compared to prior works which has required far more measurements or simulations, the predictions are shown to shorten the time spent to obtain the distribution. Based on these predictions, the dependency of the decay constant on cell variation is investigated, which is a most critical parameter in analyzing the RTN distribution. This indicates that it is possible to apply ANN-based ML to predict various characteristics of 3D NAND flash memory in a much shorter time and to develop numerical models of related parameters.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"934-940"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10702511","citationCount":"0","resultStr":"{\"title\":\"Prediction of Random Telegraph Noise-Induced Threshold Voltage Shift and Its Scaling Dependency Using Machine Learning\",\"authors\":\"Eunseok Oh;Hyungcheol Shin\",\"doi\":\"10.1109/JEDS.2024.3471999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Random telegraph noise (RTN) shifts the threshold voltage (Vt) of 3D NAND flash memory cells, making it a key factor of the device malfunction. The aim of this study is to predict the distribution of RTN induced \\n<inline-formula> <tex-math>${\\\\mathrm { V}}_{\\\\mathrm { t}}$ </tex-math></inline-formula>\\n shift in 3D NAND flash memory. Artificial neural network (ANN)-based machine learning (ML) is used for this prediction. With 2000 samples, ANN is trained and tested to predict the \\n<inline-formula> <tex-math>${\\\\mathrm { V}}_{\\\\mathrm { t}}$ </tex-math></inline-formula>\\n shift of random cells with high reliability. Furthermore, ANN is applied to predict the tendency of RTN-induced \\n<inline-formula> <tex-math>${\\\\mathrm { V}}_{\\\\mathrm { t}}$ </tex-math></inline-formula>\\n shift in scaled 3D NAND. Compared to prior works which has required far more measurements or simulations, the predictions are shown to shorten the time spent to obtain the distribution. Based on these predictions, the dependency of the decay constant on cell variation is investigated, which is a most critical parameter in analyzing the RTN distribution. This indicates that it is possible to apply ANN-based ML to predict various characteristics of 3D NAND flash memory in a much shorter time and to develop numerical models of related parameters.\",\"PeriodicalId\":13210,\"journal\":{\"name\":\"IEEE Journal of the Electron Devices Society\",\"volume\":\"12 \",\"pages\":\"934-940\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10702511\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of the Electron Devices Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10702511/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10702511/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随机电报噪声(RTN)会移动三维 NAND 闪存单元的阈值电压(Vt),使其成为设备故障的关键因素。本研究旨在预测三维 NAND 闪存中 RTN 引起的 ${\mathrm { V}}_{m\mathrm { t}}$ 漂移的分布。该预测采用了基于人工神经网络(ANN)的机器学习(ML)方法。通过对 2000 个样本进行训练和测试,ANN 可以高可靠性地预测随机单元的 ${mathrm { V}}_{mathrm { t}}$ 漂移。此外,ANN 还被应用于预测缩放 3D NAND 中 RTN 引起的 ${mathrm { V}_{mathrm { t}}$ 漂移的趋势。与之前需要进行更多测量或模拟的工作相比,预测结果表明可以缩短获得分布的时间。基于这些预测,研究了衰减常数对单元变化的依赖性,这是分析 RTN 分布的最关键参数。这表明,应用基于 ANN 的 ML 可以在更短的时间内预测 3D NAND 闪存的各种特性,并开发相关参数的数值模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Random Telegraph Noise-Induced Threshold Voltage Shift and Its Scaling Dependency Using Machine Learning
Random telegraph noise (RTN) shifts the threshold voltage (Vt) of 3D NAND flash memory cells, making it a key factor of the device malfunction. The aim of this study is to predict the distribution of RTN induced ${\mathrm { V}}_{\mathrm { t}}$ shift in 3D NAND flash memory. Artificial neural network (ANN)-based machine learning (ML) is used for this prediction. With 2000 samples, ANN is trained and tested to predict the ${\mathrm { V}}_{\mathrm { t}}$ shift of random cells with high reliability. Furthermore, ANN is applied to predict the tendency of RTN-induced ${\mathrm { V}}_{\mathrm { t}}$ shift in scaled 3D NAND. Compared to prior works which has required far more measurements or simulations, the predictions are shown to shorten the time spent to obtain the distribution. Based on these predictions, the dependency of the decay constant on cell variation is investigated, which is a most critical parameter in analyzing the RTN distribution. This indicates that it is possible to apply ANN-based ML to predict various characteristics of 3D NAND flash memory in a much shorter time and to develop numerical models of related parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of the Electron Devices Society
IEEE Journal of the Electron Devices Society Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.20
自引率
4.30%
发文量
124
审稿时长
9 weeks
期刊介绍: The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信