电容耦合近阈值偏置:基于金属氧化物 TFT 的物联网应用低功耗设计

IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yixin Fu;Zhixuan Wang;Shuai Yuan;Shengdong Zhang;Yudi Zhao;Junchen Dong;Kai Zhao
{"title":"电容耦合近阈值偏置:基于金属氧化物 TFT 的物联网应用低功耗设计","authors":"Yixin Fu;Zhixuan Wang;Shuai Yuan;Shengdong Zhang;Yudi Zhao;Junchen Dong;Kai Zhao","doi":"10.1109/JEDS.2024.3480269","DOIUrl":null,"url":null,"abstract":"Metal Oxide Thin Film Transistors (MO TFTs) have garnered considerable interest in emerging Internet of Things (IoT) fields such as wearable electronics, displays, Radio Frequency Identification (RFID), and biomedical monitoring, owing to their flexibility and transparency. However, limitations in channel materials make MO TFT-based circuits unipolar. Unipolar circuits often exhibit elevated short-circuit power consumption, which restricts the development of MO TFTs in the IoT sector. This paper introduces a Capacitively Coupled Near-Threshold Biasing (CCNB) technique that leverages the unique Capacitance-Voltage (C-V) characteristics of MO TFTs to bias devices in the near-threshold region, achieving nearly a 95% reduction in power consumption compared to traditional designs with the device coupling ratio (channel capacitance/overlap capacitance) at 40. Furthermore, considering the significance of clock signals in IoT applications, we have also developed a low-power full-swing Ring Oscillator (RO) based on our CCNB technique, resulting in a 90% reduction in power consumption and a nearly 70% reduction in PDP compared to conventional low-power designs.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"956-964"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10716537","citationCount":"0","resultStr":"{\"title\":\"Capacitively Coupled Near-Threshold Biasing: Low-Power Design Based on Metal Oxide TFTs for IoT Applications\",\"authors\":\"Yixin Fu;Zhixuan Wang;Shuai Yuan;Shengdong Zhang;Yudi Zhao;Junchen Dong;Kai Zhao\",\"doi\":\"10.1109/JEDS.2024.3480269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal Oxide Thin Film Transistors (MO TFTs) have garnered considerable interest in emerging Internet of Things (IoT) fields such as wearable electronics, displays, Radio Frequency Identification (RFID), and biomedical monitoring, owing to their flexibility and transparency. However, limitations in channel materials make MO TFT-based circuits unipolar. Unipolar circuits often exhibit elevated short-circuit power consumption, which restricts the development of MO TFTs in the IoT sector. This paper introduces a Capacitively Coupled Near-Threshold Biasing (CCNB) technique that leverages the unique Capacitance-Voltage (C-V) characteristics of MO TFTs to bias devices in the near-threshold region, achieving nearly a 95% reduction in power consumption compared to traditional designs with the device coupling ratio (channel capacitance/overlap capacitance) at 40. Furthermore, considering the significance of clock signals in IoT applications, we have also developed a low-power full-swing Ring Oscillator (RO) based on our CCNB technique, resulting in a 90% reduction in power consumption and a nearly 70% reduction in PDP compared to conventional low-power designs.\",\"PeriodicalId\":13210,\"journal\":{\"name\":\"IEEE Journal of the Electron Devices Society\",\"volume\":\"12 \",\"pages\":\"956-964\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10716537\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of the Electron Devices Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10716537/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10716537/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

金属氧化物薄膜晶体管(MO TFT)因其灵活性和透明度,在可穿戴电子设备、显示器、射频识别(RFID)和生物医学监测等新兴物联网(IoT)领域备受关注。然而,由于沟道材料的限制,基于 MO TFT 的电路都是单极电路。单极电路通常表现出较高的短路功耗,这限制了 MO TFT 在物联网领域的发展。本文介绍了一种电容耦合近阈值偏置(CCNB)技术,该技术利用 MO TFT 独特的电容-电压(C-V)特性在近阈值区对器件进行偏置,与器件耦合比(沟道电容/重叠电容)为 40 的传统设计相比,功耗降低了近 95%。此外,考虑到时钟信号在物联网应用中的重要性,我们还开发了基于 CCNB 技术的低功耗全摆环振荡器 (RO),与传统低功耗设计相比,功耗降低了 90%,PDP 降低了近 70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capacitively Coupled Near-Threshold Biasing: Low-Power Design Based on Metal Oxide TFTs for IoT Applications
Metal Oxide Thin Film Transistors (MO TFTs) have garnered considerable interest in emerging Internet of Things (IoT) fields such as wearable electronics, displays, Radio Frequency Identification (RFID), and biomedical monitoring, owing to their flexibility and transparency. However, limitations in channel materials make MO TFT-based circuits unipolar. Unipolar circuits often exhibit elevated short-circuit power consumption, which restricts the development of MO TFTs in the IoT sector. This paper introduces a Capacitively Coupled Near-Threshold Biasing (CCNB) technique that leverages the unique Capacitance-Voltage (C-V) characteristics of MO TFTs to bias devices in the near-threshold region, achieving nearly a 95% reduction in power consumption compared to traditional designs with the device coupling ratio (channel capacitance/overlap capacitance) at 40. Furthermore, considering the significance of clock signals in IoT applications, we have also developed a low-power full-swing Ring Oscillator (RO) based on our CCNB technique, resulting in a 90% reduction in power consumption and a nearly 70% reduction in PDP compared to conventional low-power designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of the Electron Devices Society
IEEE Journal of the Electron Devices Society Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.20
自引率
4.30%
发文量
124
审稿时长
9 weeks
期刊介绍: The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信