作为纳米级互连器件的优化铜/铁掺杂氮化硼纳米带:DFT 研究

IF 4.2 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mandar Jatkar, Mallikarjun P.Y.
{"title":"作为纳米级互连器件的优化铜/铁掺杂氮化硼纳米带:DFT 研究","authors":"Mandar Jatkar,&nbsp;Mallikarjun P.Y.","doi":"10.1016/j.mssp.2024.109050","DOIUrl":null,"url":null,"abstract":"<div><div>This study incorpates Density Functional Theory (DFT) to investigate the influence of copper (Cu) and Iron (Fe) atom passivation on Boron Nitride Nanoribbons (ZBNRs). Through meticulous analysis, we explore their electronic and stuctrural properties, particularly focusing on edge states. 2Fe ZBNR shows the highest stability (−9.12eV) as compared other configurations. Calculation reveals that increased stability with escalating atom concentration. Band structure and Density of States (DOS) are examined, along with the viability of passivated ZBNRs as a application of metal interconnects. 1Fe ZBNR gives the highest Fermi energy((-4.46eV). Using different configurations of ZBNRs, we model nanoscale interconnect application. We analyze their efficacy interms of delay and other parameters. 1Cu ZBNR shows lowest interconnect delay (26.3us) as compared to other configurations. This exploration contributes to understanding the potential of BNRs in nanoelectronics interconnect.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"186 ","pages":"Article 109050"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Cu/Fe doped Boron Nitride Nanoribbons as nanoscale interconnect: DFT Investigation\",\"authors\":\"Mandar Jatkar,&nbsp;Mallikarjun P.Y.\",\"doi\":\"10.1016/j.mssp.2024.109050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study incorpates Density Functional Theory (DFT) to investigate the influence of copper (Cu) and Iron (Fe) atom passivation on Boron Nitride Nanoribbons (ZBNRs). Through meticulous analysis, we explore their electronic and stuctrural properties, particularly focusing on edge states. 2Fe ZBNR shows the highest stability (−9.12eV) as compared other configurations. Calculation reveals that increased stability with escalating atom concentration. Band structure and Density of States (DOS) are examined, along with the viability of passivated ZBNRs as a application of metal interconnects. 1Fe ZBNR gives the highest Fermi energy((-4.46eV). Using different configurations of ZBNRs, we model nanoscale interconnect application. We analyze their efficacy interms of delay and other parameters. 1Cu ZBNR shows lowest interconnect delay (26.3us) as compared to other configurations. This exploration contributes to understanding the potential of BNRs in nanoelectronics interconnect.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"186 \",\"pages\":\"Article 109050\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800124009466\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800124009466","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用密度泛函理论(DFT)研究铜(Cu)和铁(Fe)原子钝化对氮化硼纳米带(ZBNRs)的影响。通过细致的分析,我们探索了它们的电子和结构特性,尤其是边缘态。与其他构型相比,2Fe ZBNR 显示出最高的稳定性(-9.12eV)。计算表明,随着原子浓度的增加,稳定性也在增加。我们还研究了带结构和状态密度 (DOS),以及钝化 ZBNR 作为金属互连器件应用的可行性。1Fe ZBNR 具有最高的费米能(-4.46eV)。我们使用不同配置的 ZBNRs 建立了纳米级互连应用模型。我们分析了它们在延迟和其他参数方面的功效。与其他配置相比,1Cu ZBNR 显示出最低的互连延迟(26.3us)。这一探索有助于了解 BNR 在纳米电子互连中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized Cu/Fe doped Boron Nitride Nanoribbons as nanoscale interconnect: DFT Investigation
This study incorpates Density Functional Theory (DFT) to investigate the influence of copper (Cu) and Iron (Fe) atom passivation on Boron Nitride Nanoribbons (ZBNRs). Through meticulous analysis, we explore their electronic and stuctrural properties, particularly focusing on edge states. 2Fe ZBNR shows the highest stability (−9.12eV) as compared other configurations. Calculation reveals that increased stability with escalating atom concentration. Band structure and Density of States (DOS) are examined, along with the viability of passivated ZBNRs as a application of metal interconnects. 1Fe ZBNR gives the highest Fermi energy((-4.46eV). Using different configurations of ZBNRs, we model nanoscale interconnect application. We analyze their efficacy interms of delay and other parameters. 1Cu ZBNR shows lowest interconnect delay (26.3us) as compared to other configurations. This exploration contributes to understanding the potential of BNRs in nanoelectronics interconnect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信