Yao Wang , Dongwei Wang , Kai Wang , Min Zhao , Cizhou Li , Yu Wang , Xuwei Liu , Lei Zhao , Zhuoyan Hu
{"title":"γ-氨基丁酸可减轻荔枝黄素样蛋白诱导的炎症反应并减少肠道微生物转移","authors":"Yao Wang , Dongwei Wang , Kai Wang , Min Zhao , Cizhou Li , Yu Wang , Xuwei Liu , Lei Zhao , Zhuoyan Hu","doi":"10.26599/FSHW.2022.9250251","DOIUrl":null,"url":null,"abstract":"<div><div>Previous research reported litchi thaumatin-like protein (LcTLP) could lead to inflammation, which is a factor causing the adverse reactions after excessive intake of litchi. As a main amino acid in litchi pulp, <em>γ</em>-aminobutyric acid (GABA) was found with anti-inflammatory effect. Therefore, this study aimed to investigate the effects of GABA on LcTLP-induced inflammation through RAW264.7 macrophages and C57BL mice models. <em>In vitro</em> study showed GABA could effectively regulate the level of inflammatory cytokines (interleukin (IL)-1β, IL-6, IL-10, and prostaglandin E2) and Ca<sup>2+</sup> in cells, and inhibit the phosphorylation of p65, I<em>κ</em>B, p38, c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). These results indicate GABA alleviated inflammation through nuclear factor-κB and mitogen-activated protein kinase pathways signaling pathways. <em>In vivo</em> experiment was performed to verify the anti-inflammatory effect of GABA, and the results demonstrated that GABA reduced the inflammation and oxidative stress in the liver of LcTLP-treated mice, as it down-regulated the pro-inflammatory cytokines, malondialdehyde, aspartate transferase, and alanine transaminase. The relative expression of phosphorylated p38, JNK and ERK in mice liver with GABA treatment were reduced to 65 %, 39 % and 80 % of the control group, respectively. Furthermore, GABA treatment enriched probiotic bacteria and decreased pathogenic bacteria in mice gut, which reveals GABA could effectively reduce the translocation of gut microbiota.</div></div>","PeriodicalId":12406,"journal":{"name":"Food Science and Human Wellness","volume":"13 5","pages":"Pages 3043-3053"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"γ-Aminobutyric acid alleviates litchi thaumatin-like protein-induced inflammation and reduces gut microbial translocation\",\"authors\":\"Yao Wang , Dongwei Wang , Kai Wang , Min Zhao , Cizhou Li , Yu Wang , Xuwei Liu , Lei Zhao , Zhuoyan Hu\",\"doi\":\"10.26599/FSHW.2022.9250251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Previous research reported litchi thaumatin-like protein (LcTLP) could lead to inflammation, which is a factor causing the adverse reactions after excessive intake of litchi. As a main amino acid in litchi pulp, <em>γ</em>-aminobutyric acid (GABA) was found with anti-inflammatory effect. Therefore, this study aimed to investigate the effects of GABA on LcTLP-induced inflammation through RAW264.7 macrophages and C57BL mice models. <em>In vitro</em> study showed GABA could effectively regulate the level of inflammatory cytokines (interleukin (IL)-1β, IL-6, IL-10, and prostaglandin E2) and Ca<sup>2+</sup> in cells, and inhibit the phosphorylation of p65, I<em>κ</em>B, p38, c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). These results indicate GABA alleviated inflammation through nuclear factor-κB and mitogen-activated protein kinase pathways signaling pathways. <em>In vivo</em> experiment was performed to verify the anti-inflammatory effect of GABA, and the results demonstrated that GABA reduced the inflammation and oxidative stress in the liver of LcTLP-treated mice, as it down-regulated the pro-inflammatory cytokines, malondialdehyde, aspartate transferase, and alanine transaminase. The relative expression of phosphorylated p38, JNK and ERK in mice liver with GABA treatment were reduced to 65 %, 39 % and 80 % of the control group, respectively. Furthermore, GABA treatment enriched probiotic bacteria and decreased pathogenic bacteria in mice gut, which reveals GABA could effectively reduce the translocation of gut microbiota.</div></div>\",\"PeriodicalId\":12406,\"journal\":{\"name\":\"Food Science and Human Wellness\",\"volume\":\"13 5\",\"pages\":\"Pages 3043-3053\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Human Wellness\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213453024002349\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Human Wellness","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213453024002349","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
γ-Aminobutyric acid alleviates litchi thaumatin-like protein-induced inflammation and reduces gut microbial translocation
Previous research reported litchi thaumatin-like protein (LcTLP) could lead to inflammation, which is a factor causing the adverse reactions after excessive intake of litchi. As a main amino acid in litchi pulp, γ-aminobutyric acid (GABA) was found with anti-inflammatory effect. Therefore, this study aimed to investigate the effects of GABA on LcTLP-induced inflammation through RAW264.7 macrophages and C57BL mice models. In vitro study showed GABA could effectively regulate the level of inflammatory cytokines (interleukin (IL)-1β, IL-6, IL-10, and prostaglandin E2) and Ca2+ in cells, and inhibit the phosphorylation of p65, IκB, p38, c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). These results indicate GABA alleviated inflammation through nuclear factor-κB and mitogen-activated protein kinase pathways signaling pathways. In vivo experiment was performed to verify the anti-inflammatory effect of GABA, and the results demonstrated that GABA reduced the inflammation and oxidative stress in the liver of LcTLP-treated mice, as it down-regulated the pro-inflammatory cytokines, malondialdehyde, aspartate transferase, and alanine transaminase. The relative expression of phosphorylated p38, JNK and ERK in mice liver with GABA treatment were reduced to 65 %, 39 % and 80 % of the control group, respectively. Furthermore, GABA treatment enriched probiotic bacteria and decreased pathogenic bacteria in mice gut, which reveals GABA could effectively reduce the translocation of gut microbiota.
期刊介绍:
Food Science and Human Wellness is an international peer-reviewed journal that provides a forum for the dissemination of the latest scientific results in food science, nutriology, immunology and cross-field research. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. By their effort, it has been developed to promote the public awareness on diet, advocate healthy diet, reduce the harm caused by unreasonable dietary habit, and directs healthy food development for food industrial producers.