通过保全特性表征块上三角子代数之间的乔丹嵌入

IF 1 3区 数学 Q1 MATHEMATICS
Ilja Gogić , Tatjana Petek , Mateo Tomašević
{"title":"通过保全特性表征块上三角子代数之间的乔丹嵌入","authors":"Ilja Gogić ,&nbsp;Tatjana Petek ,&nbsp;Mateo Tomašević","doi":"10.1016/j.laa.2024.10.005","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the algebra of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> complex matrices. We consider arbitrary subalgebras <span><math><mi>A</mi></math></span> of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> which contain the algebra of all upper-triangular matrices (i.e. block upper-triangular subalgebras), and their Jordan embeddings. We first describe Jordan embeddings <span><math><mi>ϕ</mi><mo>:</mo><mi>A</mi><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> as maps of the form <span><math><mi>ϕ</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mi>T</mi><mi>X</mi><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> or <span><math><mi>ϕ</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mi>T</mi><msup><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msup><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, where <span><math><mi>T</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is an invertible matrix, and then we obtain a simple criteria of when one block upper-triangular subalgebra Jordan-embeds into another (and in that case we describe the form of such embeddings). As a main result, we characterize Jordan embeddings <span><math><mi>ϕ</mi><mo>:</mo><mi>A</mi><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (when <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>) as continuous injective maps which preserve commutativity and spectrum. We show by counterexamples that all these assumptions are indispensable (unless <span><math><mi>A</mi><mo>=</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> when injectivity is superfluous).</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"704 ","pages":"Pages 192-217"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing Jordan embeddings between block upper-triangular subalgebras via preserving properties\",\"authors\":\"Ilja Gogić ,&nbsp;Tatjana Petek ,&nbsp;Mateo Tomašević\",\"doi\":\"10.1016/j.laa.2024.10.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the algebra of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> complex matrices. We consider arbitrary subalgebras <span><math><mi>A</mi></math></span> of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> which contain the algebra of all upper-triangular matrices (i.e. block upper-triangular subalgebras), and their Jordan embeddings. We first describe Jordan embeddings <span><math><mi>ϕ</mi><mo>:</mo><mi>A</mi><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> as maps of the form <span><math><mi>ϕ</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mi>T</mi><mi>X</mi><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> or <span><math><mi>ϕ</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mi>T</mi><msup><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msup><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, where <span><math><mi>T</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is an invertible matrix, and then we obtain a simple criteria of when one block upper-triangular subalgebra Jordan-embeds into another (and in that case we describe the form of such embeddings). As a main result, we characterize Jordan embeddings <span><math><mi>ϕ</mi><mo>:</mo><mi>A</mi><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (when <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>) as continuous injective maps which preserve commutativity and spectrum. We show by counterexamples that all these assumptions are indispensable (unless <span><math><mi>A</mi><mo>=</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> when injectivity is superfluous).</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"704 \",\"pages\":\"Pages 192-217\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524003859\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003859","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 Mn 为 n×n 复矩阵代数。我们考虑包含所有上三角矩阵代数的 Mn 的任意子代数 A(即块上三角子代数)及其乔丹嵌入。我们首先将乔丹内嵌 j:A→Mn 描述为形式为 ϕ(X)=TXT-1 或 ϕ(X)=TXtT-1 的映射,其中 T∈Mn 是一个可逆矩阵,然后我们得到一个简单的标准,即当一个块上三角子代数乔丹内嵌到另一个块上三角子代数时(在这种情况下,我们描述这种内嵌的形式)。作为一个主要结果,我们将乔丹嵌入 j:A→Mn (当 n≥3 时)描述为连续注入映射,它保留了交换性和频谱。我们通过反例证明所有这些假设都是不可或缺的(除非 A=Mn 时注入性是多余的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing Jordan embeddings between block upper-triangular subalgebras via preserving properties
Let Mn be the algebra of n×n complex matrices. We consider arbitrary subalgebras A of Mn which contain the algebra of all upper-triangular matrices (i.e. block upper-triangular subalgebras), and their Jordan embeddings. We first describe Jordan embeddings ϕ:AMn as maps of the form ϕ(X)=TXT1 or ϕ(X)=TXtT1, where TMn is an invertible matrix, and then we obtain a simple criteria of when one block upper-triangular subalgebra Jordan-embeds into another (and in that case we describe the form of such embeddings). As a main result, we characterize Jordan embeddings ϕ:AMn (when n3) as continuous injective maps which preserve commutativity and spectrum. We show by counterexamples that all these assumptions are indispensable (unless A=Mn when injectivity is superfluous).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信