{"title":"增强布拉格反射器辅助 GeSn SACM-SPAD 性能的仿真模型,用于自动驾驶汽车中的 1550 nm 激光雷达应用","authors":"Islam Arafa, Hassan Mostafa, Yasmine Elogail","doi":"10.1016/j.ijleo.2024.172074","DOIUrl":null,"url":null,"abstract":"<div><div>A safe 3-D lidar sensor for autonomous vehicle creates a high demand on 1550 nm SPADs detectors. Due to the limitation of the energy band gab and absorption coefficient of Si and Ge, their photodetectors have low efficiency at the 1550 nm wavelength. Doping Ge with Sn reduces its bandgap and enables higher efficiency in this range while adding Bragg reflector represents a smart way to increase absorption area effective thickness. Here a simulation model for Ge<sub>(1-x)</sub>Sn<sub>x</sub> SACM SPAD is proposed to work as a 1550 nm laser detector. Two Bragg reflectors are built using Si\\SiGe and Si\\SiGeSn layers. Results show a significant enhancement on detector optical properties. PDP reaches 38 % at room temperature and the increase in Pdp due to Bragg reflector reaches 66 %. Although DCR also increases, it can be handled with proper dead time configuration.</div></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"317 ","pages":"Article 172074"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation model to enhance Bragg reflector assisted GeSn SACM-SPAD performance for 1550 nm LIDAR applications in autonomous vehicles\",\"authors\":\"Islam Arafa, Hassan Mostafa, Yasmine Elogail\",\"doi\":\"10.1016/j.ijleo.2024.172074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A safe 3-D lidar sensor for autonomous vehicle creates a high demand on 1550 nm SPADs detectors. Due to the limitation of the energy band gab and absorption coefficient of Si and Ge, their photodetectors have low efficiency at the 1550 nm wavelength. Doping Ge with Sn reduces its bandgap and enables higher efficiency in this range while adding Bragg reflector represents a smart way to increase absorption area effective thickness. Here a simulation model for Ge<sub>(1-x)</sub>Sn<sub>x</sub> SACM SPAD is proposed to work as a 1550 nm laser detector. Two Bragg reflectors are built using Si\\\\SiGe and Si\\\\SiGeSn layers. Results show a significant enhancement on detector optical properties. PDP reaches 38 % at room temperature and the increase in Pdp due to Bragg reflector reaches 66 %. Although DCR also increases, it can be handled with proper dead time configuration.</div></div>\",\"PeriodicalId\":19513,\"journal\":{\"name\":\"Optik\",\"volume\":\"317 \",\"pages\":\"Article 172074\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003040262400473X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003040262400473X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Simulation model to enhance Bragg reflector assisted GeSn SACM-SPAD performance for 1550 nm LIDAR applications in autonomous vehicles
A safe 3-D lidar sensor for autonomous vehicle creates a high demand on 1550 nm SPADs detectors. Due to the limitation of the energy band gab and absorption coefficient of Si and Ge, their photodetectors have low efficiency at the 1550 nm wavelength. Doping Ge with Sn reduces its bandgap and enables higher efficiency in this range while adding Bragg reflector represents a smart way to increase absorption area effective thickness. Here a simulation model for Ge(1-x)Snx SACM SPAD is proposed to work as a 1550 nm laser detector. Two Bragg reflectors are built using Si\SiGe and Si\SiGeSn layers. Results show a significant enhancement on detector optical properties. PDP reaches 38 % at room temperature and the increase in Pdp due to Bragg reflector reaches 66 %. Although DCR also increases, it can be handled with proper dead time configuration.
期刊介绍:
Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields:
Optics:
-Optics design, geometrical and beam optics, wave optics-
Optical and micro-optical components, diffractive optics, devices and systems-
Photoelectric and optoelectronic devices-
Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials-
Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis-
Optical testing and measuring techniques-
Optical communication and computing-
Physiological optics-
As well as other related topics.