晶体结构对金属化用铜膜残余应力的影响和调节机制

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS
Wenju Li , Shu Xiao , Xiaobo Zhang , Xinyu Meng , Yixiong Gao , Shuyu Fan , Tijun Li , Paul K. Chu
{"title":"晶体结构对金属化用铜膜残余应力的影响和调节机制","authors":"Wenju Li ,&nbsp;Shu Xiao ,&nbsp;Xiaobo Zhang ,&nbsp;Xinyu Meng ,&nbsp;Yixiong Gao ,&nbsp;Shuyu Fan ,&nbsp;Tijun Li ,&nbsp;Paul K. Chu","doi":"10.1016/j.tsf.2024.140556","DOIUrl":null,"url":null,"abstract":"<div><div>Deformation cracking and delamination arising from residual stress are the main challenges for metallization in large-scale integrated circuits. Herein, an ultra-low residual stress Cu film is prepared on amorphous SiO<sub>2</sub> by mixed power magnetron sputtering. Compared to conventional Cu films, the residual stress in the film decreases by 1434 times. The nano multi-layer structure produces lower stress and deformation as well as better reliability. The multi-layer Ti underlayer also reduces the residual stress and promotes the low-defect growth of Cu. The lower surface roughness, smaller dislocation density, predominant grain orientations of 〈111〉 and 〈001〉, and more substructures are beneficial to the reduction of residual stress. In addition, interlayer stress cancellation can be achieved by changing the number of 〈111〉 grains. The research on grain growth at the interface of nano multi-layer films reveals an effective means to fabricate films with low residual stress for metallization in integrated circuits.</div></div>","PeriodicalId":23182,"journal":{"name":"Thin Solid Films","volume":"807 ","pages":"Article 140556"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects and modulation mechanism of crystal structure on residual stress of Cu films used for metallization\",\"authors\":\"Wenju Li ,&nbsp;Shu Xiao ,&nbsp;Xiaobo Zhang ,&nbsp;Xinyu Meng ,&nbsp;Yixiong Gao ,&nbsp;Shuyu Fan ,&nbsp;Tijun Li ,&nbsp;Paul K. Chu\",\"doi\":\"10.1016/j.tsf.2024.140556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deformation cracking and delamination arising from residual stress are the main challenges for metallization in large-scale integrated circuits. Herein, an ultra-low residual stress Cu film is prepared on amorphous SiO<sub>2</sub> by mixed power magnetron sputtering. Compared to conventional Cu films, the residual stress in the film decreases by 1434 times. The nano multi-layer structure produces lower stress and deformation as well as better reliability. The multi-layer Ti underlayer also reduces the residual stress and promotes the low-defect growth of Cu. The lower surface roughness, smaller dislocation density, predominant grain orientations of 〈111〉 and 〈001〉, and more substructures are beneficial to the reduction of residual stress. In addition, interlayer stress cancellation can be achieved by changing the number of 〈111〉 grains. The research on grain growth at the interface of nano multi-layer films reveals an effective means to fabricate films with low residual stress for metallization in integrated circuits.</div></div>\",\"PeriodicalId\":23182,\"journal\":{\"name\":\"Thin Solid Films\",\"volume\":\"807 \",\"pages\":\"Article 140556\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin Solid Films\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040609024003572\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Solid Films","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040609024003572","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

残余应力引起的变形开裂和分层是大规模集成电路金属化的主要挑战。本文采用混合功率磁控溅射技术在非晶二氧化硅上制备了超低残余应力铜膜。与传统铜膜相比,薄膜中的残余应力降低了 1434 倍。纳米多层结构产生的应力和变形更小,可靠性更高。多层钛底层也降低了残余应力,促进了铜的低缺陷生长。较低的表面粗糙度、较小的位错密度、以〈111〉和〈001〉为主的晶粒取向以及更多的子结构都有利于减少残余应力。此外,还可以通过改变〈111〉晶粒的数量来消除层间应力。对纳米多层薄膜界面晶粒生长的研究揭示了一种制造低残余应力薄膜的有效方法,可用于集成电路的金属化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects and modulation mechanism of crystal structure on residual stress of Cu films used for metallization
Deformation cracking and delamination arising from residual stress are the main challenges for metallization in large-scale integrated circuits. Herein, an ultra-low residual stress Cu film is prepared on amorphous SiO2 by mixed power magnetron sputtering. Compared to conventional Cu films, the residual stress in the film decreases by 1434 times. The nano multi-layer structure produces lower stress and deformation as well as better reliability. The multi-layer Ti underlayer also reduces the residual stress and promotes the low-defect growth of Cu. The lower surface roughness, smaller dislocation density, predominant grain orientations of 〈111〉 and 〈001〉, and more substructures are beneficial to the reduction of residual stress. In addition, interlayer stress cancellation can be achieved by changing the number of 〈111〉 grains. The research on grain growth at the interface of nano multi-layer films reveals an effective means to fabricate films with low residual stress for metallization in integrated circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thin Solid Films
Thin Solid Films 工程技术-材料科学:膜
CiteScore
4.00
自引率
4.80%
发文量
381
审稿时长
7.5 months
期刊介绍: Thin Solid Films is an international journal which serves scientists and engineers working in the fields of thin-film synthesis, characterization, and applications. The field of thin films, which can be defined as the confluence of materials science, surface science, and applied physics, has become an identifiable unified discipline of scientific endeavor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信