Kaifeng Zheng , Jie Pan , Ziyan Jia , Shuyan Xiao , Weige Tao , Dachuan Zhang , Qing Li , Lingjiao Pan
{"title":"基于 TC-UNet++ 和距离分水岭的细胞核图像分割和计数方法","authors":"Kaifeng Zheng , Jie Pan , Ziyan Jia , Shuyan Xiao , Weige Tao , Dachuan Zhang , Qing Li , Lingjiao Pan","doi":"10.1016/j.medengphy.2024.104244","DOIUrl":null,"url":null,"abstract":"<div><div>Nucleus segmentation and counting play a crucial role in many cell analysis applications. However, the dense distribution and blurry boundaries of nucleus make nucleus segmentation tasks challenging. This paper proposes a novel segmentation and counting method. Firstly, TC-UNet++ is proposed to achieve a global segmentation. Then, the distance watershed method is used to finish local segmentation, which separate the adhesion and overlap part of the image. Finally, counting method is performed to obtain information on the counting number, area and center of mass of nucleus. TC-UNet++ achieved a Dice coefficient of 89.95% for cell instance segmentation on the Data Science Bowl dataset, surpassing the original U-Net++ by 0.23%. It also showed a 5.09% improvement in counting results compared to other methods. On the ALL-IDB dataset, TC-UNet++ reached a Dice coefficient of 83.97%, a 7.93% increase over the original U-Net++. Additionally, its counting results improved by 16.82% compared to other approaches. These results indicate that our method has a more complete and reasonable nucleus segmentation and counting scheme compared to other methods.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method of nucleus image segmentation and counting based on TC-UNet++ and distance watershed\",\"authors\":\"Kaifeng Zheng , Jie Pan , Ziyan Jia , Shuyan Xiao , Weige Tao , Dachuan Zhang , Qing Li , Lingjiao Pan\",\"doi\":\"10.1016/j.medengphy.2024.104244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nucleus segmentation and counting play a crucial role in many cell analysis applications. However, the dense distribution and blurry boundaries of nucleus make nucleus segmentation tasks challenging. This paper proposes a novel segmentation and counting method. Firstly, TC-UNet++ is proposed to achieve a global segmentation. Then, the distance watershed method is used to finish local segmentation, which separate the adhesion and overlap part of the image. Finally, counting method is performed to obtain information on the counting number, area and center of mass of nucleus. TC-UNet++ achieved a Dice coefficient of 89.95% for cell instance segmentation on the Data Science Bowl dataset, surpassing the original U-Net++ by 0.23%. It also showed a 5.09% improvement in counting results compared to other methods. On the ALL-IDB dataset, TC-UNet++ reached a Dice coefficient of 83.97%, a 7.93% increase over the original U-Net++. Additionally, its counting results improved by 16.82% compared to other approaches. These results indicate that our method has a more complete and reasonable nucleus segmentation and counting scheme compared to other methods.</div></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350453324001450\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324001450","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A method of nucleus image segmentation and counting based on TC-UNet++ and distance watershed
Nucleus segmentation and counting play a crucial role in many cell analysis applications. However, the dense distribution and blurry boundaries of nucleus make nucleus segmentation tasks challenging. This paper proposes a novel segmentation and counting method. Firstly, TC-UNet++ is proposed to achieve a global segmentation. Then, the distance watershed method is used to finish local segmentation, which separate the adhesion and overlap part of the image. Finally, counting method is performed to obtain information on the counting number, area and center of mass of nucleus. TC-UNet++ achieved a Dice coefficient of 89.95% for cell instance segmentation on the Data Science Bowl dataset, surpassing the original U-Net++ by 0.23%. It also showed a 5.09% improvement in counting results compared to other methods. On the ALL-IDB dataset, TC-UNet++ reached a Dice coefficient of 83.97%, a 7.93% increase over the original U-Net++. Additionally, its counting results improved by 16.82% compared to other approaches. These results indicate that our method has a more complete and reasonable nucleus segmentation and counting scheme compared to other methods.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.