电动汽车充电基础设施利用模型中的政策干预和城市特征

IF 2.4 Q3 TRANSPORTATION
{"title":"电动汽车充电基础设施利用模型中的政策干预和城市特征","authors":"","doi":"10.1016/j.cstp.2024.101309","DOIUrl":null,"url":null,"abstract":"<div><div>The surge in electric vehicles adoption necessitates understanding the impact of policy interventions on public electric vehicle charging infrastructure in urban areas. This research investigates the influence of pricing frameworks on the usage of public charging facilities by analyzing both behavioral and spatial attributes of these infrastructures. Utilizing open data from Palo Alto, United States, this study employs descriptive statistical methods and interpretable machine learning approaches to scrutinize the relationship between policy initiatives and charging behaviors. The analysis underscores the significance of spatial attributes on charging behaviors. Policy interventions yield noticeable alterations in charging metrics, with locations near commercial hubs showing higher utilization, while local and frequent users resist fee adjustments. The research emphasizes the necessity for customized strategies to optimize infrastructure development and management, offering a framework for policymakers and stakeholders in sustainable urban transportation. Future research should explore similar interventions in diverse urban settings using real-time data and advanced optimization techniques to better tailor policies to the unique characteristics of specific facilities.</div></div>","PeriodicalId":46989,"journal":{"name":"Case Studies on Transport Policy","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Policy interventions and urban characteristics in modeling electric vehicle charging infrastructure utilization\",\"authors\":\"\",\"doi\":\"10.1016/j.cstp.2024.101309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The surge in electric vehicles adoption necessitates understanding the impact of policy interventions on public electric vehicle charging infrastructure in urban areas. This research investigates the influence of pricing frameworks on the usage of public charging facilities by analyzing both behavioral and spatial attributes of these infrastructures. Utilizing open data from Palo Alto, United States, this study employs descriptive statistical methods and interpretable machine learning approaches to scrutinize the relationship between policy initiatives and charging behaviors. The analysis underscores the significance of spatial attributes on charging behaviors. Policy interventions yield noticeable alterations in charging metrics, with locations near commercial hubs showing higher utilization, while local and frequent users resist fee adjustments. The research emphasizes the necessity for customized strategies to optimize infrastructure development and management, offering a framework for policymakers and stakeholders in sustainable urban transportation. Future research should explore similar interventions in diverse urban settings using real-time data and advanced optimization techniques to better tailor policies to the unique characteristics of specific facilities.</div></div>\",\"PeriodicalId\":46989,\"journal\":{\"name\":\"Case Studies on Transport Policy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies on Transport Policy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213624X24001640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies on Transport Policy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213624X24001640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

随着电动汽车采用率的激增,有必要了解政策干预对城市地区公共电动汽车充电基础设施的影响。本研究通过分析这些基础设施的行为和空间属性,调查定价框架对公共充电设施使用的影响。本研究利用美国帕洛阿尔托的开放数据,采用描述性统计方法和可解释的机器学习方法,仔细研究政策措施与充电行为之间的关系。分析强调了空间属性对充电行为的重要影响。政策干预使充电指标发生了明显变化,靠近商业中心的地点显示出更高的利用率,而本地用户和常客则抵制收费调整。这项研究强调了定制化战略优化基础设施开发和管理的必要性,为可持续城市交通领域的政策制定者和利益相关者提供了一个框架。未来的研究应利用实时数据和先进的优化技术,在不同的城市环境中探索类似的干预措施,以便更好地根据具体设施的独特性制定政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Policy interventions and urban characteristics in modeling electric vehicle charging infrastructure utilization
The surge in electric vehicles adoption necessitates understanding the impact of policy interventions on public electric vehicle charging infrastructure in urban areas. This research investigates the influence of pricing frameworks on the usage of public charging facilities by analyzing both behavioral and spatial attributes of these infrastructures. Utilizing open data from Palo Alto, United States, this study employs descriptive statistical methods and interpretable machine learning approaches to scrutinize the relationship between policy initiatives and charging behaviors. The analysis underscores the significance of spatial attributes on charging behaviors. Policy interventions yield noticeable alterations in charging metrics, with locations near commercial hubs showing higher utilization, while local and frequent users resist fee adjustments. The research emphasizes the necessity for customized strategies to optimize infrastructure development and management, offering a framework for policymakers and stakeholders in sustainable urban transportation. Future research should explore similar interventions in diverse urban settings using real-time data and advanced optimization techniques to better tailor policies to the unique characteristics of specific facilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
12.00%
发文量
222
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信