基于 GO-FLOW 方法的共因失效负载分担系统可靠性分析

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
Jingkui Li , Hanzheng Wang , Yunqi Tang , Zhandong Li , Xiuhong Jiang
{"title":"基于 GO-FLOW 方法的共因失效负载分担系统可靠性分析","authors":"Jingkui Li ,&nbsp;Hanzheng Wang ,&nbsp;Yunqi Tang ,&nbsp;Zhandong Li ,&nbsp;Xiuhong Jiang","doi":"10.1016/j.ress.2024.110590","DOIUrl":null,"url":null,"abstract":"<div><div>The load-sharing system (LSS) with the common-cause failure (CCF) is widely used in industrial engineering applications. If a component in this system fails, the total load is shared by the other components, leading to an increased failure rate of the surviving components. The traditional GO-FLOW method is difficult to calculate the reliability of this system accurately. To address this issue, a new reliability analysis approach is proposed in this paper. In this approach, a new GO-FLOW operator is established to simulate the LSS with CCF. Firstly, the state transfer relationship between components in the LSS is identified. Secondly, the <em>α</em>-factor is used to establish the relationship between the independent failure rate <em>λ<sub>I</sub></em> and the CCF rate <em>λ<sub>C</sub></em>. Finally, the Markov method is employed to calculate the transient-state and steady-state reliability of the system, and the calculation process for the parallel system and k-out-of-n(F) system are given, respectively. The feasibility of the proposed method is illustrated through a numerical example of a distributed electric propulsion system. This approach extends the applicability of the GO-FLOW method.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"254 ","pages":"Article 110590"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability analysis of load-sharing system with the common-cause failure based on GO-FLOW method\",\"authors\":\"Jingkui Li ,&nbsp;Hanzheng Wang ,&nbsp;Yunqi Tang ,&nbsp;Zhandong Li ,&nbsp;Xiuhong Jiang\",\"doi\":\"10.1016/j.ress.2024.110590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The load-sharing system (LSS) with the common-cause failure (CCF) is widely used in industrial engineering applications. If a component in this system fails, the total load is shared by the other components, leading to an increased failure rate of the surviving components. The traditional GO-FLOW method is difficult to calculate the reliability of this system accurately. To address this issue, a new reliability analysis approach is proposed in this paper. In this approach, a new GO-FLOW operator is established to simulate the LSS with CCF. Firstly, the state transfer relationship between components in the LSS is identified. Secondly, the <em>α</em>-factor is used to establish the relationship between the independent failure rate <em>λ<sub>I</sub></em> and the CCF rate <em>λ<sub>C</sub></em>. Finally, the Markov method is employed to calculate the transient-state and steady-state reliability of the system, and the calculation process for the parallel system and k-out-of-n(F) system are given, respectively. The feasibility of the proposed method is illustrated through a numerical example of a distributed electric propulsion system. This approach extends the applicability of the GO-FLOW method.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"254 \",\"pages\":\"Article 110590\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832024006616\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024006616","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

具有共因故障(CCF)的负载分担系统(LSS)被广泛应用于工业工程领域。如果该系统中的一个部件发生故障,总负载将由其他部件分担,从而导致幸存部件的故障率增加。传统的 GO-FLOW 方法很难准确计算该系统的可靠性。针对这一问题,本文提出了一种新的可靠性分析方法。在这种方法中,建立了一种新的 GO-FLOW 算子来模拟带有 CCF 的 LSS。首先,确定 LSS 中组件之间的状态转移关系。其次,利用 α 因子建立独立故障率 λI 和 CCF 率 λC 之间的关系。最后,采用马尔可夫法计算系统的瞬态和稳态可靠性,并分别给出了并行系统和 k-out-of-n(F) 系统的计算过程。通过一个分布式电力推进系统的数值实例说明了所提方法的可行性。这种方法扩展了 GO-FLOW 方法的适用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliability analysis of load-sharing system with the common-cause failure based on GO-FLOW method
The load-sharing system (LSS) with the common-cause failure (CCF) is widely used in industrial engineering applications. If a component in this system fails, the total load is shared by the other components, leading to an increased failure rate of the surviving components. The traditional GO-FLOW method is difficult to calculate the reliability of this system accurately. To address this issue, a new reliability analysis approach is proposed in this paper. In this approach, a new GO-FLOW operator is established to simulate the LSS with CCF. Firstly, the state transfer relationship between components in the LSS is identified. Secondly, the α-factor is used to establish the relationship between the independent failure rate λI and the CCF rate λC. Finally, the Markov method is employed to calculate the transient-state and steady-state reliability of the system, and the calculation process for the parallel system and k-out-of-n(F) system are given, respectively. The feasibility of the proposed method is illustrated through a numerical example of a distributed electric propulsion system. This approach extends the applicability of the GO-FLOW method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信