{"title":"综合电力和天然气能源系统的可靠性约束配置优化:随机方法","authors":"","doi":"10.1016/j.ress.2024.110600","DOIUrl":null,"url":null,"abstract":"<div><div>With the escalating dependence on electricity and natural gas infrastructure, ensuring both reliability and economic efficiency becomes paramount. It necessitates reliability centric measures to mitigate disruptions that could cascade between these interconnected systems. To address this challenges, this paper introduces a reliability-constrained two-stage stochastic model to optimize power-to-gas (P2 G) and gas-to-power (G2P) unit placement and sizing, aiming to enhance the reliability of both systems under stochastic scenarios. The proposed model, employing Sequential Monte Carlo (SMC) within its optimization framework, seeks to minimize investment, operation, and reliability costs. By addressing temporal uncertainties in component outages for both systems and considering uncertainties in power and gas system loads with a high temporal resolution and annual load growth, the model provides a comprehensive reliability perspective. Furthermore, sensitivity analysis is conducted to explore the impact of varying Values of Lost Load (VOLL) on the planning results. Numerical evaluation, using two integrated energy systems including IEEE 14-bus-10-gas node, and large-scale energy systems including IEEE 118-bus-85-gas node integrated power-gas system (IPGS), demonstrates a significant 12.53 % improvement in overall system reliability. Furthermore, a 2.81 % reduction in operation costs and a substantial 26.3 % reduction in reliability costs, validating the effectiveness of the proposed model.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability-constrained configuration optimization for integrated power and natural gas energy systems: A stochastic approach\",\"authors\":\"\",\"doi\":\"10.1016/j.ress.2024.110600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the escalating dependence on electricity and natural gas infrastructure, ensuring both reliability and economic efficiency becomes paramount. It necessitates reliability centric measures to mitigate disruptions that could cascade between these interconnected systems. To address this challenges, this paper introduces a reliability-constrained two-stage stochastic model to optimize power-to-gas (P2 G) and gas-to-power (G2P) unit placement and sizing, aiming to enhance the reliability of both systems under stochastic scenarios. The proposed model, employing Sequential Monte Carlo (SMC) within its optimization framework, seeks to minimize investment, operation, and reliability costs. By addressing temporal uncertainties in component outages for both systems and considering uncertainties in power and gas system loads with a high temporal resolution and annual load growth, the model provides a comprehensive reliability perspective. Furthermore, sensitivity analysis is conducted to explore the impact of varying Values of Lost Load (VOLL) on the planning results. Numerical evaluation, using two integrated energy systems including IEEE 14-bus-10-gas node, and large-scale energy systems including IEEE 118-bus-85-gas node integrated power-gas system (IPGS), demonstrates a significant 12.53 % improvement in overall system reliability. Furthermore, a 2.81 % reduction in operation costs and a substantial 26.3 % reduction in reliability costs, validating the effectiveness of the proposed model.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832024006719\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024006719","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Reliability-constrained configuration optimization for integrated power and natural gas energy systems: A stochastic approach
With the escalating dependence on electricity and natural gas infrastructure, ensuring both reliability and economic efficiency becomes paramount. It necessitates reliability centric measures to mitigate disruptions that could cascade between these interconnected systems. To address this challenges, this paper introduces a reliability-constrained two-stage stochastic model to optimize power-to-gas (P2 G) and gas-to-power (G2P) unit placement and sizing, aiming to enhance the reliability of both systems under stochastic scenarios. The proposed model, employing Sequential Monte Carlo (SMC) within its optimization framework, seeks to minimize investment, operation, and reliability costs. By addressing temporal uncertainties in component outages for both systems and considering uncertainties in power and gas system loads with a high temporal resolution and annual load growth, the model provides a comprehensive reliability perspective. Furthermore, sensitivity analysis is conducted to explore the impact of varying Values of Lost Load (VOLL) on the planning results. Numerical evaluation, using two integrated energy systems including IEEE 14-bus-10-gas node, and large-scale energy systems including IEEE 118-bus-85-gas node integrated power-gas system (IPGS), demonstrates a significant 12.53 % improvement in overall system reliability. Furthermore, a 2.81 % reduction in operation costs and a substantial 26.3 % reduction in reliability costs, validating the effectiveness of the proposed model.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.