核桃果实发育和成熟的激素、生化和遗传调控:综合视角

IF 2.4 4区 生物学 Q2 PLANT SCIENCES
Pankaj Kumar, Sidharth Sharma, Shagun Sharma, Pramod Verma, Mohammad Irfan
{"title":"核桃果实发育和成熟的激素、生化和遗传调控:综合视角","authors":"Pankaj Kumar,&nbsp;Sidharth Sharma,&nbsp;Shagun Sharma,&nbsp;Pramod Verma,&nbsp;Mohammad Irfan","doi":"10.1007/s11738-024-03730-z","DOIUrl":null,"url":null,"abstract":"<div><p>Walnut (<i>Juglans </i>spp.) trees hold immense significance in both economic and ecological contexts within agri-horticultural ecosystems. The comprehension of the intricate mechanisms underpinning walnut growth and development stands as a pivotal endeavor, essential for advancing sustainable yield practices. This comprehensive review delves into the multifaceted factors that contribute to the growth and development of walnuts, encompassing hormonal, biochemical, and genetic dimensions. Notably, hormones such as gibberellic acids (GAs) and sugars assume pivotal roles in the initiation and maturation of walnut flowers, with specific investigations demonstrating that the application of GAs has the capacity to augment male flower counts. The levels of endogenous auxins and gibberellins exhibit variations across distinct phases of walnut development, with the highest concentrations observed in young tissues. The molecular underpinnings of walnut growth and development involve a complex interplay of genetic regulation, hormonal dynamics, and environmental factors. Distinct sets of genes exhibit activation at discrete developmental stages, thereby influencing fundamental processes such as cell division, differentiation, and food reserve metabolism. Several key regulatory genes, including <i>ACC, ASMT, SAD, FAD, SOC,</i> and <i>TFL1,</i> emerge as pivotal orchestrators, steering essential processes encompassing cell division, differentiation, flowering, and fruit development. Conclusively, this article provides a detailed exploration of the diverse aspects of walnut growth and development, from genetic regulation to hormonal and biochemical processes. This will provide a valuable resource for researchers, horticulturalists, and biotechnologists aiming to improve walnut productivity and resilience in the face of changing environmental conditions.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 11","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hormonal, biochemical, and genetic regulations of walnut fruit development and ripening: an integrated perspective\",\"authors\":\"Pankaj Kumar,&nbsp;Sidharth Sharma,&nbsp;Shagun Sharma,&nbsp;Pramod Verma,&nbsp;Mohammad Irfan\",\"doi\":\"10.1007/s11738-024-03730-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Walnut (<i>Juglans </i>spp.) trees hold immense significance in both economic and ecological contexts within agri-horticultural ecosystems. The comprehension of the intricate mechanisms underpinning walnut growth and development stands as a pivotal endeavor, essential for advancing sustainable yield practices. This comprehensive review delves into the multifaceted factors that contribute to the growth and development of walnuts, encompassing hormonal, biochemical, and genetic dimensions. Notably, hormones such as gibberellic acids (GAs) and sugars assume pivotal roles in the initiation and maturation of walnut flowers, with specific investigations demonstrating that the application of GAs has the capacity to augment male flower counts. The levels of endogenous auxins and gibberellins exhibit variations across distinct phases of walnut development, with the highest concentrations observed in young tissues. The molecular underpinnings of walnut growth and development involve a complex interplay of genetic regulation, hormonal dynamics, and environmental factors. Distinct sets of genes exhibit activation at discrete developmental stages, thereby influencing fundamental processes such as cell division, differentiation, and food reserve metabolism. Several key regulatory genes, including <i>ACC, ASMT, SAD, FAD, SOC,</i> and <i>TFL1,</i> emerge as pivotal orchestrators, steering essential processes encompassing cell division, differentiation, flowering, and fruit development. Conclusively, this article provides a detailed exploration of the diverse aspects of walnut growth and development, from genetic regulation to hormonal and biochemical processes. This will provide a valuable resource for researchers, horticulturalists, and biotechnologists aiming to improve walnut productivity and resilience in the face of changing environmental conditions.</p></div>\",\"PeriodicalId\":6973,\"journal\":{\"name\":\"Acta Physiologiae Plantarum\",\"volume\":\"46 11\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physiologiae Plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11738-024-03730-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologiae Plantarum","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s11738-024-03730-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在农业园艺生态系统中,核桃树(Juglans spp.)了解核桃生长和发育的复杂机理是一项关键工作,对于推进可持续生产实践至关重要。本综述深入探讨了促进核桃生长和发育的多方面因素,包括激素、生化和遗传等方面。值得注意的是,赤霉素 (GAs) 和糖类等激素在核桃花的萌发和成熟过程中起着关键作用,具体研究表明,施用赤霉素可增加雄花数量。在核桃发育的不同阶段,内源辅酶和赤霉素的水平表现出差异,在幼嫩组织中观察到的浓度最高。核桃生长和发育的分子基础涉及基因调控、激素动态和环境因素的复杂相互作用。在不同的发育阶段,会有不同的基因被激活,从而影响细胞分裂、分化和食物储备代谢等基本过程。几个关键的调控基因,包括 ACC、ASMT、SAD、FAD、SOC 和 TFL1,成为关键的协调者,引导着细胞分裂、分化、开花和果实发育等基本过程。总之,本文详细探讨了核桃生长和发育的各个方面,从遗传调控到激素和生化过程。这将为研究人员、园艺家和生物技术专家提供宝贵的资源,以提高核桃的生产力和在不断变化的环境条件下的适应能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hormonal, biochemical, and genetic regulations of walnut fruit development and ripening: an integrated perspective

Walnut (Juglans spp.) trees hold immense significance in both economic and ecological contexts within agri-horticultural ecosystems. The comprehension of the intricate mechanisms underpinning walnut growth and development stands as a pivotal endeavor, essential for advancing sustainable yield practices. This comprehensive review delves into the multifaceted factors that contribute to the growth and development of walnuts, encompassing hormonal, biochemical, and genetic dimensions. Notably, hormones such as gibberellic acids (GAs) and sugars assume pivotal roles in the initiation and maturation of walnut flowers, with specific investigations demonstrating that the application of GAs has the capacity to augment male flower counts. The levels of endogenous auxins and gibberellins exhibit variations across distinct phases of walnut development, with the highest concentrations observed in young tissues. The molecular underpinnings of walnut growth and development involve a complex interplay of genetic regulation, hormonal dynamics, and environmental factors. Distinct sets of genes exhibit activation at discrete developmental stages, thereby influencing fundamental processes such as cell division, differentiation, and food reserve metabolism. Several key regulatory genes, including ACC, ASMT, SAD, FAD, SOC, and TFL1, emerge as pivotal orchestrators, steering essential processes encompassing cell division, differentiation, flowering, and fruit development. Conclusively, this article provides a detailed exploration of the diverse aspects of walnut growth and development, from genetic regulation to hormonal and biochemical processes. This will provide a valuable resource for researchers, horticulturalists, and biotechnologists aiming to improve walnut productivity and resilience in the face of changing environmental conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Physiologiae Plantarum
Acta Physiologiae Plantarum 生物-植物科学
CiteScore
5.10
自引率
3.80%
发文量
125
审稿时长
3.1 months
期刊介绍: Acta Physiologiae Plantarum is an international journal established in 1978 that publishes peer-reviewed articles on all aspects of plant physiology. The coverage ranges across this research field at various levels of biological organization, from relevant aspects in molecular and cell biology to biochemistry. The coverage is global in scope, offering articles of interest from experts around the world. The range of topics includes measuring effects of environmental pollution on crop species; analysis of genomic organization; effects of drought and climatic conditions on plants; studies of photosynthesis in ornamental plants, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信