{"title":"生物启发的疾病预测:利用电鳗觅食优化算法和机器学习的力量进行心脏病预测","authors":"Geetha Narasimhan, Akila Victor","doi":"10.1007/s10462-024-10975-0","DOIUrl":null,"url":null,"abstract":"<div><p>Heart disease is the most significant health problem around the world. Thus, it emphasizes the need for accurate and efficient predictive models for early diagnosis. This study proposes an innovative approach integrating the Electric Eel Foraging Optimization Algorithm (EEFOA) with the Random Forest (RF) algorithm for classifying heart disease prediction. EEFOA draws inspiration from the foraging behaviour of electric eels, a bio-inspired optimization framework capable of effectively exploring complex solutions. The objective is to improve the predictive performance of heart disease diagnosis by integrating optimization and Machine learning methodologies. The experiment uses a heart disease dataset comprising clinical and demographic features of at-risk individuals. Subsequently, EEFOA was applied to optimize the features of the dataset and classification using the RF algorithm, thereby enhancing its predictive performance. The results demonstrate that the Electric Eel Foraging Optimization Algorithm Random Forest (EEFOARF) model outperforms traditional RF and other state-of-the-art classifiers in terms of predictive accuracy, sensitivity, specificity, precision, and Log_Loss, achieving remarkable scores of 96.59%, 95.15%, 98.04%, 98%, and 0.1179, respectively. The proposed methodology has the potential to make a significant contribution, thereby reducing morbidity and mortality rates.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"57 12","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-10975-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Bio-inspired disease prediction: harnessing the power of electric eel foraging optimization algorithm with machine learning for heart disease prediction\",\"authors\":\"Geetha Narasimhan, Akila Victor\",\"doi\":\"10.1007/s10462-024-10975-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Heart disease is the most significant health problem around the world. Thus, it emphasizes the need for accurate and efficient predictive models for early diagnosis. This study proposes an innovative approach integrating the Electric Eel Foraging Optimization Algorithm (EEFOA) with the Random Forest (RF) algorithm for classifying heart disease prediction. EEFOA draws inspiration from the foraging behaviour of electric eels, a bio-inspired optimization framework capable of effectively exploring complex solutions. The objective is to improve the predictive performance of heart disease diagnosis by integrating optimization and Machine learning methodologies. The experiment uses a heart disease dataset comprising clinical and demographic features of at-risk individuals. Subsequently, EEFOA was applied to optimize the features of the dataset and classification using the RF algorithm, thereby enhancing its predictive performance. The results demonstrate that the Electric Eel Foraging Optimization Algorithm Random Forest (EEFOARF) model outperforms traditional RF and other state-of-the-art classifiers in terms of predictive accuracy, sensitivity, specificity, precision, and Log_Loss, achieving remarkable scores of 96.59%, 95.15%, 98.04%, 98%, and 0.1179, respectively. The proposed methodology has the potential to make a significant contribution, thereby reducing morbidity and mortality rates.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"57 12\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-024-10975-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-024-10975-0\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-10975-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Bio-inspired disease prediction: harnessing the power of electric eel foraging optimization algorithm with machine learning for heart disease prediction
Heart disease is the most significant health problem around the world. Thus, it emphasizes the need for accurate and efficient predictive models for early diagnosis. This study proposes an innovative approach integrating the Electric Eel Foraging Optimization Algorithm (EEFOA) with the Random Forest (RF) algorithm for classifying heart disease prediction. EEFOA draws inspiration from the foraging behaviour of electric eels, a bio-inspired optimization framework capable of effectively exploring complex solutions. The objective is to improve the predictive performance of heart disease diagnosis by integrating optimization and Machine learning methodologies. The experiment uses a heart disease dataset comprising clinical and demographic features of at-risk individuals. Subsequently, EEFOA was applied to optimize the features of the dataset and classification using the RF algorithm, thereby enhancing its predictive performance. The results demonstrate that the Electric Eel Foraging Optimization Algorithm Random Forest (EEFOARF) model outperforms traditional RF and other state-of-the-art classifiers in terms of predictive accuracy, sensitivity, specificity, precision, and Log_Loss, achieving remarkable scores of 96.59%, 95.15%, 98.04%, 98%, and 0.1179, respectively. The proposed methodology has the potential to make a significant contribution, thereby reducing morbidity and mortality rates.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.