{"title":"改善 3 纳米以下节点硅纳米片场效应晶体管电热特性的沟道微调工艺","authors":"Sanguk Lee;Jinsu Jeong;Rock-Hyun Baek","doi":"10.1109/TED.2024.3469171","DOIUrl":null,"url":null,"abstract":"This study examined the electrical and thermal behaviors of nanosheet (NS) field-effect transistors (NSFETs) with trimmed channels using a technology computer-aided design (TCAD) simulation. NSFETs are expected to exhibit excellent electrical behaviors owing to thin gate-all-around (GAA) channels. However, NSFETs still suffer from: 1) high punchthrough current (\n<inline-formula> <tex-math>${I}_{\\text {PTS}}$ </tex-math></inline-formula>\n) in the punchthrough stopper (PTS) region and 2) poor heat dissipation by the thin channel thickness. Thus, to resolve these problems, this study proposed NSFETs with trimmed NS channels and a trench gate in the PTS region. This structure can be formed via the deposition of thick silicon layers during Si/SiGe stacking and consequently trimming the silicon regions (NS channels, PTS region) following the channel release. Consequently, the trench gate strengthened the gate controllability for the PTS region, exhibiting remarkable \n<inline-formula> <tex-math>${I}_{\\text {PTS}}$ </tex-math></inline-formula>\n suppression. In addition, untrimmed thick channel ends improved heat transfer, whereas the trimmed channel centers provided excellent gate controllability. Therefore, the trimming process, which formed trimmed channels and a trench gate, is expected to simultaneously solve the inherent electrical and thermal issues encountered in NSFETs.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"71 11","pages":"7184-7191"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel Trimming Process to Improve Electro-Thermal Characteristics for Sub-3-nm Node Si Nanosheet FETs\",\"authors\":\"Sanguk Lee;Jinsu Jeong;Rock-Hyun Baek\",\"doi\":\"10.1109/TED.2024.3469171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examined the electrical and thermal behaviors of nanosheet (NS) field-effect transistors (NSFETs) with trimmed channels using a technology computer-aided design (TCAD) simulation. NSFETs are expected to exhibit excellent electrical behaviors owing to thin gate-all-around (GAA) channels. However, NSFETs still suffer from: 1) high punchthrough current (\\n<inline-formula> <tex-math>${I}_{\\\\text {PTS}}$ </tex-math></inline-formula>\\n) in the punchthrough stopper (PTS) region and 2) poor heat dissipation by the thin channel thickness. Thus, to resolve these problems, this study proposed NSFETs with trimmed NS channels and a trench gate in the PTS region. This structure can be formed via the deposition of thick silicon layers during Si/SiGe stacking and consequently trimming the silicon regions (NS channels, PTS region) following the channel release. Consequently, the trench gate strengthened the gate controllability for the PTS region, exhibiting remarkable \\n<inline-formula> <tex-math>${I}_{\\\\text {PTS}}$ </tex-math></inline-formula>\\n suppression. In addition, untrimmed thick channel ends improved heat transfer, whereas the trimmed channel centers provided excellent gate controllability. Therefore, the trimming process, which formed trimmed channels and a trench gate, is expected to simultaneously solve the inherent electrical and thermal issues encountered in NSFETs.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"71 11\",\"pages\":\"7184-7191\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10706078/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10706078/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Channel Trimming Process to Improve Electro-Thermal Characteristics for Sub-3-nm Node Si Nanosheet FETs
This study examined the electrical and thermal behaviors of nanosheet (NS) field-effect transistors (NSFETs) with trimmed channels using a technology computer-aided design (TCAD) simulation. NSFETs are expected to exhibit excellent electrical behaviors owing to thin gate-all-around (GAA) channels. However, NSFETs still suffer from: 1) high punchthrough current (
${I}_{\text {PTS}}$
) in the punchthrough stopper (PTS) region and 2) poor heat dissipation by the thin channel thickness. Thus, to resolve these problems, this study proposed NSFETs with trimmed NS channels and a trench gate in the PTS region. This structure can be formed via the deposition of thick silicon layers during Si/SiGe stacking and consequently trimming the silicon regions (NS channels, PTS region) following the channel release. Consequently, the trench gate strengthened the gate controllability for the PTS region, exhibiting remarkable
${I}_{\text {PTS}}$
suppression. In addition, untrimmed thick channel ends improved heat transfer, whereas the trimmed channel centers provided excellent gate controllability. Therefore, the trimming process, which formed trimmed channels and a trench gate, is expected to simultaneously solve the inherent electrical and thermal issues encountered in NSFETs.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.