{"title":"通过过渡金属金属化技术在氧淬火本征金刚石上实现 10-8 Ω cm² 欧姆触点的低接触电阻率记录","authors":"Sai-Fei Fan;Bo Liang;Xiao-Hui Zhang;Wen-Chao Zhang;Biao Wang;Tong-Bo Li;Tao Su;Ben-Jian Liu;Viktor Ralchenko;Kang Liu;Jia-Qi Zhu","doi":"10.1109/LED.2024.3458053","DOIUrl":null,"url":null,"abstract":"For the first time, robust ohmic contacts were successfully prepared on oxygen-terminated intrinsic diamond with insulating surface and rare carrier concentration by transition metals (TMs, including Pt, Ru, W, Cr, Zr and V) metallization. The record low specific contact resistance of \n<inline-formula> <tex-math>${2}.{5}\\times {10} ^{-{8}}~\\Omega $ </tex-math></inline-formula>\n cm2 was obtained for Pt contacts, which diffused into diamond in a metallic state and did not generate carbide but sp2 carbon and vacancy defects. We found that the shallow damage layer full of conductive defects like TMs, TM carbides, sp2 carbon and nitrogen-vacancy color centers induced by metallization within diamond is the critical reason for the formation of ohmic contacts, which acts as conductive shunts to connect the electrode contact and bulk diamond. Our findings extended the methodology and theory for the formation of reliable and efficient ohmic contacts on diamond.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2062-2065"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Record Low Contact Resistivity of 10-8 Ω cm² Ohmic Contacts on Oxygen-Terminated Intrinsic Diamond by Transition Metals Metallization\",\"authors\":\"Sai-Fei Fan;Bo Liang;Xiao-Hui Zhang;Wen-Chao Zhang;Biao Wang;Tong-Bo Li;Tao Su;Ben-Jian Liu;Viktor Ralchenko;Kang Liu;Jia-Qi Zhu\",\"doi\":\"10.1109/LED.2024.3458053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the first time, robust ohmic contacts were successfully prepared on oxygen-terminated intrinsic diamond with insulating surface and rare carrier concentration by transition metals (TMs, including Pt, Ru, W, Cr, Zr and V) metallization. The record low specific contact resistance of \\n<inline-formula> <tex-math>${2}.{5}\\\\times {10} ^{-{8}}~\\\\Omega $ </tex-math></inline-formula>\\n cm2 was obtained for Pt contacts, which diffused into diamond in a metallic state and did not generate carbide but sp2 carbon and vacancy defects. We found that the shallow damage layer full of conductive defects like TMs, TM carbides, sp2 carbon and nitrogen-vacancy color centers induced by metallization within diamond is the critical reason for the formation of ohmic contacts, which acts as conductive shunts to connect the electrode contact and bulk diamond. Our findings extended the methodology and theory for the formation of reliable and efficient ohmic contacts on diamond.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"45 11\",\"pages\":\"2062-2065\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10693351/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10693351/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Record Low Contact Resistivity of 10-8 Ω cm² Ohmic Contacts on Oxygen-Terminated Intrinsic Diamond by Transition Metals Metallization
For the first time, robust ohmic contacts were successfully prepared on oxygen-terminated intrinsic diamond with insulating surface and rare carrier concentration by transition metals (TMs, including Pt, Ru, W, Cr, Zr and V) metallization. The record low specific contact resistance of
${2}.{5}\times {10} ^{-{8}}~\Omega $
cm2 was obtained for Pt contacts, which diffused into diamond in a metallic state and did not generate carbide but sp2 carbon and vacancy defects. We found that the shallow damage layer full of conductive defects like TMs, TM carbides, sp2 carbon and nitrogen-vacancy color centers induced by metallization within diamond is the critical reason for the formation of ohmic contacts, which acts as conductive shunts to connect the electrode contact and bulk diamond. Our findings extended the methodology and theory for the formation of reliable and efficient ohmic contacts on diamond.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.