{"title":"将近红外光谱仪与化学计量学相结合,鉴别自然成熟香蕉和电石成熟香蕉。","authors":"John‑Lewis Zinia Zaukuu, Sheila Mensah, Eric Tetteh Mensah, Florence Akomanin-Mensah, Solomon Wiredu, Zoltan Kovacs","doi":"10.1038/s41538-024-00327-1","DOIUrl":null,"url":null,"abstract":"Calcium carbide is prohibited as a fruit ripening agent in many countries due to its harmful effects. Current methods for detecting calcium carbide in fruit involve time-consuming and destructive chemical analysis techniques, necessitating the need for non-destructive and rapid detection techniques. This study combined near infrared (NIR) spectroscopy with chemometrics to detect two banana varieties ripened with calcium carbide in different forms when they are peeled or unpeeled. Sixteen linear discriminant analysis (LDA) models were developed with high average classification accuracies for classifying banana based on the mode used to ripen banana, type of carbide treatment and the duration of soaking banana in carbide solution. Banana colour was predicted with partial least squared regression (PLSR) models with R2CV > 0.74, RMSECV and <5.4 and RPD close to 3. NIR coupled with chemometrics has good potential as a technique for detecting carbide ripened banana even if the banana is peeled or not.","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":" ","pages":"1-14"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513051/pdf/","citationCount":"0","resultStr":"{\"title\":\"Combining NIR spectroscopy with chemometrics for discriminating naturally ripened banana and calcium carbide ripened banana\",\"authors\":\"John‑Lewis Zinia Zaukuu, Sheila Mensah, Eric Tetteh Mensah, Florence Akomanin-Mensah, Solomon Wiredu, Zoltan Kovacs\",\"doi\":\"10.1038/s41538-024-00327-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calcium carbide is prohibited as a fruit ripening agent in many countries due to its harmful effects. Current methods for detecting calcium carbide in fruit involve time-consuming and destructive chemical analysis techniques, necessitating the need for non-destructive and rapid detection techniques. This study combined near infrared (NIR) spectroscopy with chemometrics to detect two banana varieties ripened with calcium carbide in different forms when they are peeled or unpeeled. Sixteen linear discriminant analysis (LDA) models were developed with high average classification accuracies for classifying banana based on the mode used to ripen banana, type of carbide treatment and the duration of soaking banana in carbide solution. Banana colour was predicted with partial least squared regression (PLSR) models with R2CV > 0.74, RMSECV and <5.4 and RPD close to 3. NIR coupled with chemometrics has good potential as a technique for detecting carbide ripened banana even if the banana is peeled or not.\",\"PeriodicalId\":19367,\"journal\":{\"name\":\"NPJ Science of Food\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513051/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Science of Food\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.nature.com/articles/s41538-024-00327-1\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Science of Food","FirstCategoryId":"97","ListUrlMain":"https://www.nature.com/articles/s41538-024-00327-1","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Combining NIR spectroscopy with chemometrics for discriminating naturally ripened banana and calcium carbide ripened banana
Calcium carbide is prohibited as a fruit ripening agent in many countries due to its harmful effects. Current methods for detecting calcium carbide in fruit involve time-consuming and destructive chemical analysis techniques, necessitating the need for non-destructive and rapid detection techniques. This study combined near infrared (NIR) spectroscopy with chemometrics to detect two banana varieties ripened with calcium carbide in different forms when they are peeled or unpeeled. Sixteen linear discriminant analysis (LDA) models were developed with high average classification accuracies for classifying banana based on the mode used to ripen banana, type of carbide treatment and the duration of soaking banana in carbide solution. Banana colour was predicted with partial least squared regression (PLSR) models with R2CV > 0.74, RMSECV and <5.4 and RPD close to 3. NIR coupled with chemometrics has good potential as a technique for detecting carbide ripened banana even if the banana is peeled or not.
期刊介绍:
npj Science of Food is an online-only and open access journal publishes high-quality, high-impact papers related to food safety, security, integrated production, processing and packaging, the changes and interactions of food components, and the influence on health and wellness properties of food. The journal will support fundamental studies that advance the science of food beyond the classic focus on processing, thereby addressing basic inquiries around food from the public and industry. It will also support research that might result in innovation of technologies and products that are public-friendly while promoting the United Nations sustainable development goals.