{"title":"支持下肢主动康复的轮椅的多模式人机交互。","authors":"Jie Hong, Miao Cai, Xiansheng Qin","doi":"10.1080/10255842.2024.2417204","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, an important challenge in stroke rehabilitation is how to effectively restore motor functions of lower limbs. This paper presents multimodal human computer interaction (HCI) of wheelchairs supporting lower limb active rehabilitation. First, multimodal HCI incorporating motor imagery electroencephalography (EEG), electromyography (EMG) and speech is designed. Second, prototype supporting wheelchair active rehabilitation method is illustrated in details. Third, the preliminary brain-computer interfaces (BCI) and speech recognition task experiments are carried out respectively, and the results are obtained. Finally, discussion is conducted and conclusion is drawn. This study has important practical significance in auxiliary movements and neurorehabilitation for stroke patients.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal human computer interaction of wheelchairs supporting lower limb active rehabilitation.\",\"authors\":\"Jie Hong, Miao Cai, Xiansheng Qin\",\"doi\":\"10.1080/10255842.2024.2417204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Currently, an important challenge in stroke rehabilitation is how to effectively restore motor functions of lower limbs. This paper presents multimodal human computer interaction (HCI) of wheelchairs supporting lower limb active rehabilitation. First, multimodal HCI incorporating motor imagery electroencephalography (EEG), electromyography (EMG) and speech is designed. Second, prototype supporting wheelchair active rehabilitation method is illustrated in details. Third, the preliminary brain-computer interfaces (BCI) and speech recognition task experiments are carried out respectively, and the results are obtained. Finally, discussion is conducted and conclusion is drawn. This study has important practical significance in auxiliary movements and neurorehabilitation for stroke patients.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2024.2417204\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2417204","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Multimodal human computer interaction of wheelchairs supporting lower limb active rehabilitation.
Currently, an important challenge in stroke rehabilitation is how to effectively restore motor functions of lower limbs. This paper presents multimodal human computer interaction (HCI) of wheelchairs supporting lower limb active rehabilitation. First, multimodal HCI incorporating motor imagery electroencephalography (EEG), electromyography (EMG) and speech is designed. Second, prototype supporting wheelchair active rehabilitation method is illustrated in details. Third, the preliminary brain-computer interfaces (BCI) and speech recognition task experiments are carried out respectively, and the results are obtained. Finally, discussion is conducted and conclusion is drawn. This study has important practical significance in auxiliary movements and neurorehabilitation for stroke patients.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.